
19
Programming
Basics

In This Chapter. . . .
— Introduction
— Using Boolean Instructions
— Using Timers
— Using Counters
— Using the Accumulator

hdittrich
Text Box
Handheld Programmer D3-HP & D3-HPP have been retired as of 03/2021 & 01/2018 respectively. Please consider Productivity, BRX, or CLICK series PLC systems as upgrades.

http://www.automationdirect.com/pn/D3-HP

P
ro
gr
am

m
in
g
B
as
ic
s

9--2
Programming Basics

DL305 User Manual, Rev. D

Introduction

This chapter describes some basic programming concepts used with the DL305
CPUs. It doesn’t provide detailed information on each instruction, but instead shows
howyou can use themost basic elements of the instruction set. If you have quite a bit
of PLC programming experience, you may already know some of the information.
However, we suggest you at least read the portion that discusses the accumulator
operation. The accumulator is used in many different operations.
This chapter provides an overview of the following programming concepts.

1. Boolean Instructions
2. Timer Instructions
3. Counter Instructions
4. Shift Register Instruction
5. Accumulator Instructions

Detailed examples of all categories of instructions are included in Chapters 11 & 12.
The DL305 CPUs can be programmed with the DirectSOFT PC-based
programming package, or by using the DL305 handheld programmer. There is a
separatemanual available for each of these products. If your are not familiar with the
chosen programming device we recommend you use the appropriate programming
device manual along with this manual to program your DL305 system.
The following examples will help you understand how DL305 instructions are put
together to create a program solution.

P
rogram

m
ing

B
asics

9--3
Programming Basics

DL305 User Manual, Rev. D

Using Boolean Instructions

Do you ever wonder why so many PLC manufacturers always quote the scan time
for a 1K boolean program? Simple. Most all programs utilize many boolean
instructions. These are typically very simple instructions designed to join input and
output contacts in various series and parallel combinations. Since the DirectSOFT
package allows you to use graphic symbols to build the program, you don’t
absolutely have to know the boolean equivalents of the instructions.However, itmay
be helpful at somepoint, especially if you ever have to troubleshoot the programwith
a Handheld Programmer.
The following paragraphs show how these boolean instructions are used to build
simple ladder programs.

All DL305 programs require an END statement as the last instruction. This tells the
CPU this is the end of the program. Any instructions placed after the END statement
will not be executed. (This can be useful in some cases. See Chapter 13 for an
example.)

OUT

020000

END

All programs must have
and END statement

You use a contact to start rungs that contain both contacts and coils. The boolean
instruction that does this is called a Store or, STR instruction. The output point is
represented by theOutput or, OUT instruction. The following example shows how to
enter a single contact and a single output coil.

OUT

020000

END

DirectSOFT Example Handheld Mnemonics

STR 000
OUT 020
END

Normally closed contacts are also very common. This is accomplished with the
Store Not or, STRN instruction. The following example shows a simple rung with a
normally closed contact.

OUT

020000

END

DirectSOFT Example Handheld Mnemonics

STRN 000
OUT 020
END

END Statement

Simple Rungs

Normally Closed
Contact

P
ro
gr
am

m
in
g
B
as
ic
s

9--4
Programming Basics

DL305 User Manual, Rev. D

Use the AND instruction to join two or more contacts in series. The following
example shows two contacts in series and a single output coil.

OUT

020000

END

001

DirectSOFT Example Handheld Mnemonics

STR 000
AND 001
OUT 020
END

Sometimes it is necessary to use midline outputs to get additional outputs that are
conditional on other contacts. The following example shows how you can use the
AND instruction to continue a rung with more conditional outputs.

OUT

020000

END

001

DirectSOFT Example Handheld Mnemonics

STR 000
AND 001
OUT 010
AND 002
OUT 021
AND 003
OUT 022
END

002

OUT

021

003

OUT

022

You may also join contacts in parallel. The OR instruction allows you to do this. The
following example shows two contacts in parallel and a single output coil.

OUT

020000

END

001

DirectSOFT Example Handheld Mnemonics

STR 000
OR 001
OUT 020
END

Contacts in Series

Midline Outputs

Parallel Elements

P
rogram

m
ing

B
asics

9--5
Programming Basics

DL305 User Manual, Rev. D

Quite often it is necessary to join several groups of series elements in parallel. The
Or Store (ORSTR) instruction allows this operation. The following example shows a
simple network consisting of series elements joined in parallel.

OUT

020000

END

002

001

003

DirectSOFT Example Handheld Mnemonics

STR 000
AND 001
STR 002
AND 003
ORSTR
OUT 020
END

Quite often it is also necessary to join one or more parallel branches in series. The
And Store (ANDSTR) instruction allows this operation. The following example
shows a simple network with contact branches in series with parallel contacts.

OUT

020000

END

001

002

DirectSOFT Example Handheld Mnemonics

STR 000
STR 001
OR 002
ANDSTR
OUT 020
END

Many applications require comparisons of data values. This is especially true in
applications that use counters. SomePLCmanufacturersmake it really difficult to do
a simple comparison of a counter value and a constant or register. The DL330 and
DL340 CPUs provide Comparative Boolean instructions that allow you to quickly
and easily solve this problem. Comparative Boolean evaluates two 4-digit values
using boolean contacts. The valid evaluations are equal and not equal.

In the following example when the value
in counter C600 is equal to the constant
value 1234, output 020 will energize.

020
OUT

C600 K1234

The DL330P also provides Comparative Boolean instructions, but they are greater
than and less than instructions instead of equal and not equal.

Joining Series
Branches in
Parallel

Joining Parallel
Branches in Series

Comparative
Boolean

P
ro
gr
am

m
in
g
B
as
ic
s

9--6
Programming Basics

DL305 User Manual, Rev. D

You can combine the various types of series and parallel branches to solvemost any
application problem. The following example shows a simple combination network.

OUT

020000

END

002

003001 004

005

006

There are limits to howmany elements you can include in a rung. This is because the
DL305 CPUs use an 8-level boolean stack to evaluate the various logic elements.
The boolean stack is a temporary storage area that solves the logic for the rung.
Each time you enter a STR instruction, the instruction is placed on the top of the
boolean stack. Any other instructions on the boolean stack are pushed down a level.
The AND, OR, ANDSTR, and ORSTR instructions combine levels of the boolean
stack when they are encountered. Since the boolean stack is only eight levels, an
error will occur if the CPU encounters a rung that uses more than the eight levels of
the boolean stack.

All of you software programmers may be saying, “I useDirectSOFT, so I don’t need
to know how the stack works.” Not quite true. Even though you can build the network
with the graphic symbols, the limits of the CPU are still the same. If the stack limit is
exceeded when the program is compiled, an error will occur.

Combination
Networks

Boolean Stack

P
rogram

m
ing

B
asics

9--7
Programming Basics

DL305 User Manual, Rev. D

The following example shows how the boolean stack is used to solve boolean logic.

S

S

S

S

S

S

S

S

001 OR (002 AND 003)

STR 000 STR 001 STR 002
1 STR 000

2

3

4

5

6

7

8

1 STR 001

2 STR 000

3

4

5

6

7

8

1 STR 002

2 STR 001

3 STR 000

4

5

6

7

8

AND 003
1 002 AND 003

2 STR 001

3 STR 000

4

5

6

7

8

ORSTR
1

2 STR 000

3

8

OUT

020000 001

002 003

004

005

STR

OR

AND

ORSTR

ANDSTR

Output
STR

STR

AND

004 AND [001 OR (002 AND 003)]

AND 004
1

2 STR 000

3

8

NOT 005 OR 004 AND [001 OR (002 AND 003)]

OR 005
1

2 STR 000

3

8

ANDSTR
000 AND (NOT 005 OR 004) AND [001 OR (002 AND 003)]1

2

3

8

P
ro
gr
am

m
in
g
B
as
ic
s

9--8
Programming Basics

DL305 User Manual, Rev. D

Using Timers

Timers are used to time an event for a desired length of time. The single input timer
will time as long as the input is on. When the input changes from on to off the timer
current value is reset to 0. Timers normally time in tenth of a second intervals, but you
can turn on Special Relay 770 to change the timers to hundredth of a second
intervals. There is discrete bit associated with each timer to indicate the current
value is equal to or greater than the preset value. The timing diagram below shows
the relationship between the timer input, associated discrete bit, current value, and
timer preset.

TMR T600
K30

001

Input

T600

0 10 20 30 40 50 60 0Current
Value

Timer preset

T600 020
OUT

001

Contact

Timer

P
rogram

m
ing

B
asics

9--9
Programming Basics

DL305 User Manual, Rev. D

Using Counters

Counters are used to count events. There are two types of counters.
S Regular Up counters
S Stage counters (used with the RLLPLUS instructions)

The up counter has two inputs, a count input and a reset input. The maximum count
value is 9999. The timingdiagrambelowshows the relationship between the counter
input, counter reset, associated discrete bit, current value, and counter preset.

001

001

CT600

1 2 3 4 5 6 7 80

1 2 3 4 0Current
Value

CNT C600
K3

002

002

Counter preset

Up

Reset

The stage counter has a count input and is reset by the RST instruction. This
instruction is usedwith the RLLPLUS instructions. Themaximum count value is 9999.
The timing diagram below shows the relationship between the counter input,
associated discrete bit, current value, counter preset and reset instruction.

001

001

CT600

1 2 3 4 5 6 7 80

1 2 3 4 0Current
Value

SGCNT C600
K3

RST
CT

Counter preset

Up

P
ro
gr
am

m
in
g
B
as
ic
s

9--10
Programming Basics

DL305 User Manual, Rev. D

Using the Accumulator

The accumulator in the DL305 series CPUs is a 16 bit register which is used as a
temporary storage location for data being copied ormanipulated in somemanor. For
example, you have to use the accumulator to performmath operations such as add,
subtract, multiply, etc. Since there are 16 bits, you can use up to a 4-digit BCD
number. The accumulator is reset to 0 at the end of every CPU scan.
The Data Store (DSTR) and Data Out (DOUT) instructions and their variations are
used to copy data from a register location to the accumulator, or to copy data from
the accumulator to a register location.
In the following example, when input 000 is on the value (7502) in R402 and R403 is
loaded into the accumulator using the Data Store (F50) instruction. The value in the
accumulator is output to data registers R404 and R405 using the Data Out (F60)
instruction.

000
DSTR (F50)

R 402

DOUT (F60)
R 404

7 5

R 403

Accumulator

R405 R404

7 5 0 2

7 5 0 2

0 2

R 402DirectSOFT Display

You probably noticed it took two registers to hold a 4-digit BCD number. This is
because each BCD digit requires four binary bit positions.

Since the accumulator is 16 bits and register locations are 8 bits, there are variations
of the DSTR and DOUT instructions that allow you to copy a single register, or even
half of a register (4 bits) either to or from the accumulator. The following example
shows how you could use the DSTR3 and DOUT2 instructions to copy the lower 4
bits from register 5 to the upper 4 bits of register 16. (These registers correspond to
I/O points and Control Relays respectively.)

The upper 4 bits (*) of R400
are not altered

000
DSTR3 (F53)

R 005

DOUT2 (F62)
R 016

R016

8 *

* 8

R005

Accumulator0 0 0 8
Load the lower 4 bits in
register 5 into the lower 4 bits
of the accumulator

Output the lower 4 bits of the
accumulator to the upper 4
bits of R16

The upper 4 bits (*) of R5
are not loaded into the
accumulator

DirectSOFT Display

Copying Data to
and from the
Accumulator

P
rogram

m
ing

B
asics

9--11
Programming Basics

DL305 User Manual, Rev. D

Instructions that change or manipulate data in some way also use the accumulator.
The result of the change resides in the accumulator. The original data that was being
changed is cleared from the accumulator. In the following example, when input 000
is on the value inR000 andR010 is loaded into the accumulator using theDataStore
5 (F55) instruction. The bit pattern in the accumulator is shifted to the left 4 bit
positions using the Shift Left (F80) instruction. Notice how the result resides in the
accumulator. The value in the accumulator is copied to data registers R404 and
R405 using the Data Out (F60) instruction.

000

DSTR5 (F55)
R 000

SHFL (F80)
K4

DOUT (F60)
R 404

776 will be ON after the shift
777 will be OFF after the shift

1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shifted out of
accumulator

S S S S

Acc.

9 3

R 405

5 0

R 404

776

777

Shifted a “1” out of Accumulator

Accumulator equals zero after shift

Load the value in registers R0
and R10 into the accumulator

Shift the value in the
accumulator 4 bits to the left

Copy the value in the
accumulator to registers R404
and R405

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
I/O Points 000--007I/O Points 100--107

0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1

6 9

R 010

3 5

R 000DirectSOFT Display

Changing the
Accumulator Data

P
ro
gr
am

m
in
g
B
as
ic
s

9--12
Programming Basics

DL305 User Manual, Rev. D

The following table lists several instructions that utilize the accumulator. Not all
instructions allow you to use all the different memory types. Chapters 11 & 12
provide details on these instructions.

Memory Areas

Category Mnemonic Description
I/O CRs Data

Register
Current
Values

4-digit
BCD
Const.

Shift
Register
Coils

DSTR
(F50)

Load a 4-digit constant or a 2-bytes
of register data into the
accumulator

DSTR 1
(F51)

Load 1-byte of register data into the
accumulator

Data Load

DSTR 2
(F52)

Load the upper 4 bits of a register
into the lower 4 bits of the
accumulator

DSTR 3
(F53)

Load the lower 4 bits of a register
into the upper 4 bits of the
accumulator

DSTR 5
(F55)

Load the digital values of 16 I/O
points (2 bytes) into the
accumulator

DOUT
(F60)

Write the accumulator to 2
sequential registers

DOUT 1
(F61)

Write the lower byte of the
accumulator to a register

Data Out

DOUT 2
(F62)

Write the lower 4 bits of the
accumulator to the upper 4 bits of a
register

DOUT 3
(F63)

Write the lower 4 bits of the
accumulator to the lower 4 bits of a
register

DOUT 5
(F65)

Write the contents of the
accumulator to a 16-point output
module (2 bytes)

CMP
(F70)

Compare a 2-byte BCD reference
or a 4-digit BCD constant to the
accumulator

ADD
(F71)

Add a 2-byte BCD reference or a
4-digit BCD constant to the
accumulator

Math
SUBTRACT
(F72)

Subtract a 2-byte BCD reference or
a 4-digit BCD constant from the
accumulator

MULTIPLY
(F73)

Multiply a 2-byte BCD reference or
a 4-digit BCD constant by the value
in the accumulator

DIVIDE
(F74)

Divide the accumulator by a 2-byte
BCD reference or a 4-digit BCD
constant

— Memory Type available for use with the instruction
X — Not available

Accumulator
Operations

P
rogram

m
ing

B
asics

9--13
Programming Basics

DL305 User Manual, Rev. D

Memory Areas

Category Mnemonic Description
I/O CRs Data

Register
Current
Values

4-digit
BCD
Const.

Shift
Register
Coils

DAND
(F75)

Performs a bit “AND” on a 2-byte
reference or a 4-digit BCD constant
and the bits in the accumulator

DOR
(F76)

Performs a bit “OR” on a 2-byte
reference or a 4-digit BCD constant
and the bits in the accumulator

Bit
Manipulation

SHIFT
RIGHT
(F80)

Shifts the contents of the
accumulator to the right a specified
number of times. 1 -- 15 bits can be
shifted.

SHIFT LEFT
(F81)

Shifts the contents of the
accumulator to the left a specified
number of times.
1 -- 15 bits can be shifted.

DECODE
(F82)

Decodes the first 4 bits of the
accumulator into a decimal number.

D t

ENCODE
(F83)

Encodes an accumulator bit into a
4-bit code that represents the
decimal number (0--15).

Data
Conversion

INV
(F84)

Logically inverts the contents of the
accumulator (1 to 0, 0 to 1).

BCD--BIN
(F85)

Converts the accumulator value
from BCD to Binary

BIN--BCD
(F86)

Converts the accumulator value
from Binary to BCD

Fault
Detection

FAULT
(F20)

Sends a 4-digit BCD number, from
a 2-byte reference or a constant, to
the programmer display

— Memory Type available for use with the instruction
X — Not available

	Programming Basics
	Introduction
	Using Boolean Instructions
	Using Timers
	Using Counters
	Using the Accumulator

