# I/O Wiring and Specifications 

In This Chapter. ...

- I/O Wiring Strategies
- I/O Module Wiring and Specifications
- Glossary of Specification Terms
- I/O Module Wiring diagrams


## I/O Wiring Strategies

DL405 System Isolation Boundaries

The DL405 system is very flexible and will work in many different wiring configurations. By studying this section before actual installation, you should find the best wiring strategy for your application. This will help to lower system cost, wiring errors, and avoid safety problems.
DL405 system circuitry is divided into three main regions separated by isolation boundaries, shown in the drawing below. Electrical isolation provides safety, so that a fault in one area does not damage another. A transformer in the power supply provides magnetic isolation between the primary and secondary sides. Opto-couplers provide optical isolation in Input and Output circuits. This isolates logic circuitry from the field side, where factory machinery connects. Note that the discrete inputs are isolated from the discrete outputs, because each is isolated from the logic side. Isolation boundaries protect the operator interface (and the operator) from power input faults or field wiring faults. When wiring a DL405 system, it is extremely important to avoid making external connections that connect logic side circuits to any other.

Primary Side Secondary, or Logic side Field Side


The next figure shows the physical layout of a DL405 system, as viewed from the front. In addition to the basic circuits covered above, AC-powered units include an auxiliary +24 VDC power supply with its own isolation boundary. Since the supply output is isolated from the other three circuits, it can power input and/or output circuits!


In some cases, using the built-in auxiliary +24VDC supply can result in a cost savings for your control system. It can power combined loads up to 400 mA . Be careful not to exceed the current rating of the supply. If you are the system designer for your application, you may be able to select and design in field devices which can use the +24VDC auxiliary supply.

Powering I/O Circuits Using Separate Supplies

In most applications it will be necessary to power the input devices from one power source, and to power output loads from another source. Loads often require high-energy AC power, while input sensors use low-energy DC. If a machine operator is likely to come in close contact with input wiring, then safety reasons also require isolation from high-energy output circuits. It is most convenient if the loads can use the same power source as the DL405 system, and the input sensors can use the auxiliary supply, as shown to the left in the figure below.
If the loads cannot be powered from the system supply, then a separate supply must be used as shown to the right in the figure below.


A worst-case scenario, from a cost and complexity view-point, is an application which requires separate power sources for the DL405 system, input devices, and output loads. The example wiring diagram below on the right shows how this can work, but also that the auxiliary supply output is an unused resource.


Sinking / Sourcing Concepts

This next section helps to provide a solid understanding of "sinking" and "sourcing" concepts. Use of these terms occurs frequently in input or output circuit discussions. It is the goal of this section to make these concepts easy to understand, further ensuring success in installation.

## Sinking = provides a path to supply ground (-) Sourcing = provides a path to supply source (+)

Sinking and sourcing terminology only applies to DC input and output circuits because of the reference to (+) and ( - ) polarities. Input and output points that are sinking or sourcing only can conduct current in only one direction. This means it is possible to connect the external supply and field device to the I/O point with current trying to flow in the wrong direction, and the circuit will not operate. However, you can successfully connect the supply and field device every time by understanding "sourcing" and "sinking".
For example, the figure to the right illustrates a "sinking" input. To properly connect the external supply, we just have to connect it so the input provides a path to ground (-). Start at the DL405 system input terminal, follow through the input sensing circuit, exit at the common terminal, and connect the supply ( - ) to the common terminal. By adding the switch,
 between the supply (+) and the input, we have completed the circuit. Current flows in the direction of the arrow when the switch is closed.

By applying the circuit principle above to the four possible combinations of input/output sinking/sourcing types, you have the four circuits as shown below. The I/O module specifications at the end of this chapter list the input or output type.


I/O "Common" Terminal Concepts

In order for an I/O circuit to operate, current must enter at one terminal and exit at another. This means at least two terminals are associated with every I/O point. In the figure to the right, the Input or Output terminal is the main path for the current. One additional terminal must provide the return path to the power supply.

If there was unlimited space and budget for I/O terminals, then every I/O point could have two dedicated terminals as the figure above shows. However, providing this level of flexibility is not practical or even necessary for most applications. Most Input or Output points are in groups which share the return path (called commons). The figure to the right shows a group (or bank) of 4 input points which share a common return path. In this way, the four inputs require only five terminals instead of eight.


NOTE: In the circuit above, the current in the common path is 4 times any channel's input current when all inputs are energized. This is important in output circuits where heavier gauge wire is sometimes necessary on commons.

Most DL405 input and output modules group their I/O points into banks that share a common return path. The best indication of I/O common grouping is on the wiring label, such as the one shown to the right. The miniature schematic shows two circuit banks with eight input points in each. The common terminal for each is labeled "CA" and "CB", respectively.
In the wiring label example, the positive terminal of a DC supply connects to the common terminals. Some symbols you will see on the wiring labels, and their meanings are:


Connecting DC I/O to "Solid State" Field Devices

Solid State Input Sensors

In the previous section on Sourcing and Sinking concepts, we explained that DC I/O circuits sometimes will only allow current to flow one way. This is also true for many of the field devices which have solid-state (transistor) interfaces. In other words, field devices can also be sourcing or sinking. When connecting two devices in a series DC circuit, one must be wired as sourcing and the other as sinking.
Several DL405 DC input modules are flexible in that they detect current flow in either direction, so they can be wired as either sourcing or sinking. In the following circuit, a field device has an open-collector NPN transistor output. It sinks current from the input point, which sources current. The power supply can be the +24 auxiliary supply or another supply ( +12 VDC or +24 VDC ), as long as the input specifications are met.


In the next circuit, a field device has an open-emitter PNP transistor output. It sources current to the input point, which sinks the current back to ground. Since the field device is sourcing current, no additional power supply is required.


Sometimes an application requires connecting an output point to a solid state input on a device. This type of connection is usually made to carry a low-level control signal, not to send DC power to an actuator.
Several of the DL405 DC output modules are the sinking type. This means that each DC output provides a path to ground when it is energized. In the following circuit, the output point sinks current to the output common when energized. It is connected to a sourcing input of a field device input.

DL405 System DC Sinking Output
Field Device

the next example a sinking DC output point is connected to the sinking input of a field device. This is different, because both the DL405 system output and field device input are sinking type. Since the circuit must have one sourcing and one sinking device, a sourcing capability is added to the system output by using a pull-up resistor. In the circuit below, connect Rpull-up from the output to the DC output circuit power input.

DL405 System DC Output


NOTE 1: DO NOT attempt to drive a heavy load ( $>25 \mathrm{~mA}$ ) with this pull-up method NOTE 2: Using the pull-up resistor to implement a sourcing output has the effect of inverting the output point logic. In other words, the field device input is energized when the DL405 system output is OFF, from a ladder logic point-of-view. Your ladder program must comprehend this and generate an inverted output. Or, you may choose to cancel the effect of the inversion elsewhere, such as in the field device.

It is important to choose the correct value of $R$ pull-up. In order to do so, the nominal input current to the field device (l input) when the input is energized needs to be identified. If this value is not known, it can be calculated as shown (a typical value is 15 mA ). Then use l input and the voltage of the external supply to compute $R$ pull-up. Next calculate the power Ppull-up (in watts), in order to size R pull-up properly.

$$
\begin{aligned}
& I_{\text {input }}=\frac{V_{\text {input (turn-on) }}}{R_{\text {input }}} \\
& R_{\text {pull-up }}=\frac{V_{\text {supply }}-0.7}{I_{\text {input }}}-R_{\text {input }} \quad \quad P_{\text {pull-up }}=\frac{V_{\text {supply }}{ }^{2}}{R_{\text {pullup }}}
\end{aligned}
$$

The easiest way to drive a sinking input field device as shown below is to use a DC sourcing output module. The Darlington NPN stage will have about 1.5 V ON-state saturation, but this is not a problem with low-current solid-state loads.
DL405 System DC Sourcing Output


## Relay Output Guidelines

Prolonging Relay Contact Life

Four output modules in the DL405 I/O family feature relay outputs: D4-08TR, F4-08TRS-1, F4-08TRS-2, D4-16TR. Relays are best for the following applications:

- Loads that require higher currents than the solid-state outputs can deliver
- Cost-sensitive applications
- Some output channels need isolation from other outputs (such as when some loads require different voltages than other loads)
Some applications in which NOT to use relays:
- Loads that require currents under 10 mA
- Loads which must be switched at high speed or heavy duty cycle

Relay outputs in the DL405 output modules are available in two contact arrangements, shown to the right. The Form A type, or SPST (single pole, single throw) type is normally open and is the simplest to use. The Form C type, or SPDT (single pole, double throw) type has a center contact which moves and a stationary contact on either side. This provides a normally closed contact and a normally open contact.
Some relay output module's relays share common terminals, which connect to the wiper contact in each relay of the bank. Other relay modules have relays which are completely isolated from each other. In all cases, the module drives the relay coil when the corresponding output point is on.

Relay with Form A contacts


Relay with Form C contacts


Relay contacts wear according to the amount of relay switching, amount of spark created at the time of open or closure, and presence of airborne contaminants. However, there are some steps you can take to help prolong the life of relay contacts:

- Switch the relay on or off only when the application requires it.
- If you have the option, switch the load on or off at a time when it will draw the least current.
- Take measures to suppress inductive voltage spikes from inductive DC loads such as contactors and solenoids (circuit given below).

DL405 Relay Output

## Inductive Field Device



Adding external contact protection may extend relay life beyond the number of contact cycles listed in the specification tables for relay modules. High current inductive loads such as clutches, brakes, motors, direct-acting solenoid valves, and motor starters will benefit the most from external contact protection.
The RC network must be located close to the relay module output connector. To find the values for the RC snubber network, first determine the voltage across the contacts when open, and the current through them when closed. If the load supply is $A C$, then convert the current and voltage values to peak values:

$$
C(\mu \mathrm{~F})=\frac{\mathrm{I}^{2}}{10} \quad \mathrm{R}(\Omega)=\frac{\mathrm{V}}{10 \times \mathrm{I}^{\mathrm{x}}} \quad \text {, where } \mathrm{x}=1+\frac{50}{\mathrm{~V}}
$$

C minimum $=0.001 \mu \mathrm{~F}$, the voltage rating of C must be $\geq \mathrm{V}$, non-polarized
$R$ minimum $=0.5 \Omega, 1 / 2 \mathrm{~W}$, tolerance is $\pm 5 \%$
For example; a relay contact drives a load at 120VAC, $1 / 2 \mathrm{~A}$. Since this example has an AC power source, first, calculate the peak values:

$$
\begin{aligned}
& I_{\text {peak }}=I_{\text {rms }} \times 1.414=0.5 \times 1.414=0.707 \text { Amperes } \\
& V_{\text {peak }}=V_{\text {rms }} \times 1.414=120 \times 1.414=169.7 \text { Volts }
\end{aligned}
$$

Now, finding the values of R and C :

$$
\begin{aligned}
& \mathrm{C}(\mu \mathrm{~F})=\frac{\mathrm{I}^{2}}{10}=\frac{0.707^{2}}{10}=0.05 \mu \mathrm{~F}, \text { voltage rating } \geq 170 \text { Volts } \\
& \mathrm{R}(\Omega)=\frac{\mathrm{V}}{10 \times \mathrm{I}^{\mathrm{x}}}, \text { where } \mathrm{x}=1+\frac{50}{\mathrm{~V}} \\
& \mathrm{x}=1+\frac{50}{169.7}=1.29 \quad \mathrm{R}(\Omega)=\frac{169.7}{10 \times 0.707^{1.29}}=16 \Omega, 1 / 2 \mathrm{~W}, \pm 5 \%
\end{aligned}
$$

If the contact is switching a DC inductive load, add a diode across the load as near to load coil as possible. When the load is energized the diode is reverse-biased (high impedance). When the load is turned off, energy stored in its coil is released in the form of a negative-going voltage spike. At this moment the diode is forward-biased (low impedance) and shunts the energy to ground. This protects the relay contacts from the high voltage arc that would occur just as the contacts are opening.
For best results, follow these guidelines in using a noise suppression diode:

- DO NOT use this circuit with an AC power supply.
- Place the diode as close to the inductive field device as possible.
- Use a diode with a peak inverse voltage rating (PIV) at least 100 PIV, 3A forward current or larger. Use a fast-recovery type (such as Schottky type). DO NOT use a small-signal diode such as 1N914, 1N941, etc.
- Be sure the diode is in the circuit correctly before operation. If installed backwards, it short-circuits the supply when the relay energizes.


## I/O Module Wiring and Specifications

## Module Placement

Before wiring the I/O modules in your system to field devices, it's very important to make sure each I/O module is in the right slot and base in the system. Costly wiring errors may be avoided by doing the following:


- Perform the power budget calculations for each base to verify the base power supply can power all the modules in the base.
- Whenever possible, keep modules with high voltage and current wiring away from sensitive analog modules.


NOTE: Please refer to the applicable Base Controller User manual for the power budget requirements and worksheets.

## I/O Module Status Indicators

Color Coding of I/O Modules

The DL405 family of I/O modules have a color-coded stripe on the front bezel to help identify whether the module type is input, output, or special module. The color code description is listed below:

## Module Type

Discrete/Analog Output Discrete/Analog Input Other

Color Code
Red
Blue
White


Wiring a Module with a Terminal Block

You must first remove the front cover of the module prior to wiring. To remove the cover depress the bottom tab of the cover and tilt the cover up to loosen from the module.
All DL405 I/O module terminal blocks are removable for your convenience. To remove the terminal block loosen the retaining screws and and lift the terminal block away from the module. When you return the terminal block to the module make sure the terminal block is tightly seated. Be sure to tighten the retaining screws. You should also verify the loose terminal block LED is off when system power is applied.

WARNING: For some modules, field device power may still be present on the terminal block even though the system is turned off. To minimize the risk of electrical shock, disconnect all field device power before you remove the connector.


Wiring a Module using a Ribbon Cable/Solder Type Connector

The 32 point and 64 point modules use a different style of connector due to the increased number of I/O points. There are two types of connectors used with the higher density modules. One is a D-shell connector, which requires soldering. The other is a ribbon cable type of connector which simply crimps onto a ribbon cable.

For the 64 point modules, you must either use ribbon cable connectors, or special solder type connectors designed specifically for the 64 point modules. Order part number D4-IO3264S, which includes 2 solder-type connectors in the pack, or order D4-IO32R, which contains 2 ribbon cable type connectors in the pack.

NOTE: For another alternative wiring solution, consider using Automationdirect.com's ZIPLink Connection systems. The ZIPlink cables plug directly into a Automationdirect.com I/O module. The opposite end is connected to a ZIPlink connector module. Please refer to our catalog for more information on these products.


## Part Numbers for Module

 ConnectorsVendors For the Parts Used in the Terminal Block Configuration

Both types of connectors are available from Automationdirect.com. These same connectors are also available from other Fujitsu Microelectronics, Inc. Use the following part numbers to order these connectors.

## Automationdirect.com Part Numbers

- D4-IO3264R - Ribbon cable connectors, 2 in a pack. Can be used on either 32 point or 64 point modules.
- D4-IO3264S - Solder type connector, 2 in a pack. Can be used on either 32 point or 64 point modules.


## Fujitsu Part Numbers

For connectors made by Fujitsu, you may contact Fijitsu at the following address:
Fujitsu Microelectronics, Inc.
Electronic Components Division 3545 North First Street
San Jose, CA 95134-1804 USA
408-922-9000

- FCN-367J040-AU/F, or -AG/F - 32 / 64 point ribbon cable connector
- FCN-361J040-AU, or -AG - 32 / 64 point solder type connector (AU connectors use gold over palladium plating. AG connectors use silver plating.)

If you wish to use a terminal block with your 32 or 64 point module, here is a partial list of vendors who can provide the parts you will need to build the configuration shown earlier consisting of a ribbon cable, a ribbon cable connector and a terminal block.

| Vendors |  |
| :--- | :--- |
| 3M Electronic Products Division | DuPont Connector Systems |
| 6801 River Place Blvd. | Barley Mill Plaza |
| Austin, TX 78726-9000 | Wilmington, DE 19898-0019 |
| 800-225-5373 | 800-237-2374 |
| Augat/RDI | Phoenix Contacts Products |
| 525 Randy Rd. | P.O. Box 4100 |
| Carol Stream, , 60188 | Harrisburg, PA 17111-0100 |
| 708-682-4100 | 717-944-1300 |
| AMP Incorporated | Thomas \& Betts Electronics Div. |
| P.O. Box 3608 | 200 Executive Center Drive |
| Harrisburg, PA 17105-3608 | Greenville, SC 29616 |
| 717-564-0100 | 803-676-2900 |
| Cooper Industries, Belden Div. | Weidmuller, Inc. |
| P.O. Box 1980 | 821 Southlake Blvd. |
| Richmond, IN 47375 | Richmond, VA 23236 |
| 317-983-5200 | 804-794-2877 |
| Newark Electronics | (Newark Electronics is a distributor |
| 4108 North Ravenswood Ave. | for all of the above product manufac- |
| Chicago, II 60640 | turers except for Phoenix Contacts |
| 312-784-5100 | Products) |
|  |  |

Ribbon Cable The chart below lists cables which can be used to connect the terminal block with a 32 I/O module. The cables are 40 conductors with a .050 " pitch PVC stranded ribbon cable.

| Description/Type | Vendor | Part Number |
| :--- | :--- | :--- |
| Gray / 26 AWG | $3 M$ | $3801 / 40$ |
| Gray / 26 AWG | Belden | 9 L 26040 |
| Gray / 28 AWG | Belden | 9 L 28040 |
| Gray / 28 AWG | DuPont | $76825-040$ |
| Gray / 28 AWG | AMP | $499116-5$ |
| Color coded / 26 AWG | $3 M$ | 3811 / 40 |
| Color coded / 28 AWG | Belden | $9 R 28040$ |
| Color coded / 28 AWG | DuPont | $76177-040$ |

Ribbon Cable Connectors

The ribbon cable connectors listed below are for attaching the ribbon cable to the terminal block. The cables are all .100 " x .100 " $2 \times 20$ female ribbon connectors with a center bump.

| Description/Type | Vendor | Part Number |
| :--- | :--- | :--- |
| Connector | $3 M$ | $3417-7640$ |
| Strain Relief | $3 M$ | $3448-3040$ |
| Connector | $3 M$ | $3417-7640$ |
| Strain Relief | $3 M$ | $3448-3040$ |
| Connector (pre-assembled) | $3 M$ | $89140-0103-$ T0 |
| Strain Relief | $3 M$ | $3448-89140$ |
| Connector (with strain relief) | Thomas \& Betts | $622-4041$ |
| Connector (pre-assembled) | AMP | $746286-9$ |
| Strain Relief | AMP | $499252-1$ |
| Connector (with strain relief) | DuPont | $66902-240$ |
| Connector (with strain relief) | Molex | $15-29-9940$ |

Interface Terminal Block

Below are terminal blocks which can be used to transition a 40 conductor ribbon cable to 40 discrete field wires. The terminal block features are: $2 \times 20.100 " \times .100 "$ pin center (male) connector head terminals (.2" centers) accepting 22-12 AWG, no fuses.

| Description/Type | Vendor | Part Number |
| :--- | :--- | :--- |
| Panel Mount <br> Rail Mount | Weidmuller | RI-40A /914897 <br> RI-40A /914908 |
| Rail Mount | Phoenix Contacts | FLKM 40 / 2281076 |
| Special Mount <br> (DIN rail compatible) <br> includes ribbon connector | Augat/RDI | 2M40FC | Checklist

Use the following guidelines when wiring the I/O modules in your system.
Step1 - $\quad$ Note the limits to the size of wire the modules can accept. The table below lists the maximum AWG for each module type. Smaller AWG is acceptable to use for each of the modules.

| Module type | Maximum AWG |
| :--- | :--- |
| 8 point | 12 |
| 16 point | 14 |
| 32 point - common | 20 |
| 32 point - other | 24 |
| 64 point | 24 (requires ribbon cable) |
| F4-08THM-X | 10 (Thermocouple wire) |

Note: 12 AWG Type TFFN or Type MTW can be used on 8pt. modules. 14 AWG Type TFFN or Type MTW can be used on 16pt. modules.

Step2 - Always use a continuous length of wire. Do not splice wires to attain a needed length.
Step3 - Use the shortest possible wire length.
Step4 - Where possible use wire trays for routing .
Step5 - Avoid running wires near high energy wiring.
Step6 - Avoid running input wiring close to output wiring where possible.
Step7 - To minimize voltage drops when wires must run a long distance, consider using multiple wires for the return lines.
Step8 - $\quad$ Where possible avoid running DC wiring in close proximity to AC wiring.
Step9 - Avoid creating sharp bends in the wires.
Step10 - IMPORTANT! To help avoid having a module with a blown fuse, we suggest you add external fuses to your I/O wiring. A fast blow fuse, with a lower current rating than the I/O module fuse can be added to each common, or a fuse with a rating of slightly less than the maximum current per output point can be added to each output.


NOTE: For modules which have soldered-in or non-replaceable fuses, we recommend that you return your module to us and let us replace your blown fuse(s) since disassembling the module will void the warranty.

DL405 Discrete The following table lists the available DL405 input modules. Input Module Chart

| DL405 <br> Input Module Type | Number of <br> Input Points | DC Current <br> Sink Input | DC Current <br> Source Input | AC Input |
| :--- | :---: | :---: | :---: | :---: |
| D4-16ND2 | 16 |  | $\checkmark$ |  |
| D4-16ND2F | 16 |  | $\checkmark$ |  |
| D4-32ND3-1 | 32 | $\checkmark$ | $\checkmark$ |  |
| D4-32ND3-2 | 32 | $\checkmark$ | $\checkmark$ |  |
| D4-64ND2 | 64 | $\checkmark$ |  |  |
| D4-08NA | 8 |  |  | $\checkmark$ |
| D4-16NA (-1) | 16 |  |  | $\checkmark$ |
| D4-16NE3 | 16 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| F4-08NE3S | 8 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| D4-08ND3S | 8 | $\checkmark$ | $\checkmark$ |  |

DL405 Discrete Output Module Chart

The following table lists the available DL405 output modules. Specifications begin after the input modules' specifications.

| DL405 <br> Output Module Type | Number of <br> Output Points | DC Current <br> Sink Output | DC Current <br> Source <br> Output | AC Output |
| :--- | :---: | :---: | :---: | :---: |
| D4-08TD1 | 8 | $\checkmark$ |  |  |
| F4-08TD1S | 8 | $\checkmark$ |  |  |
| D4-16TD1 | 16 | $\checkmark$ |  |  |
| D4-16TD2 | 16 |  | $\checkmark$ |  |
| D4-32TD1 | 32 | $\checkmark$ |  |  |
| D4-32TD1-1 | 32 | $\checkmark$ |  |  |
| D4-32TD2 | 32 |  | $\checkmark$ |  |
| D4-64TD1 | 64 | $\checkmark$ |  |  |
| D4-08TA | 8 |  |  | $\checkmark$ |
| D4-16TA | 16 |  |  | $\checkmark$ |
| D4-08TR | 8 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| F4-08TRS-1 | 8 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| F4-08TRS-2 | 8 | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| D4-16TR | 16 | $\checkmark$ | $\checkmark$ | $\checkmark$ |

## Special Input Module Chart

| Specification | F4-08THM-n | F4-08RTD |
| :---: | :---: | :---: |
| Channels | 8 | 8 |
| Input Ranges | Type E: $-270 / 1000^{\circ} \mathrm{C}\left(-450 / 1832^{\circ} \mathrm{F}\right)$ <br> Type J: $\quad-210 / 760^{\circ} \mathrm{C}\left(-350 / 1390^{\circ} \mathrm{F}\right)$ <br> Type K: $-270 / 1370^{\circ} \mathrm{C}\left(-450 / 2500^{\circ} \mathrm{F}\right)$ <br> Type R: $0 / 1768^{\circ} \mathrm{C}\left(-32 / 3214^{\circ} \mathrm{F}\right)$ <br> Type S: $0 / 1768^{\circ} \mathrm{C}\left(-32 / 3214^{\circ} \mathrm{F}\right)$ <br> Type T: $\quad-270 / 400^{\circ} \mathrm{C}\left(-450 / 752^{\circ} \mathrm{F}\right)$ <br> Type C: $0 / 2320^{\circ} \mathrm{C}\left(-32 / 4208^{\circ} \mathrm{F}\right)$ <br> Type B: $141 / 1820^{\circ} \mathrm{C}\left(286 / 3594^{\circ} \mathrm{F}\right)$ <br> Type P: $\quad-99 / 1395^{\circ} \mathrm{C}\left(-146 / 2543^{\circ} \mathrm{F}\right)$ <br> $-1: \quad 0$ to 50 mV <br> -2: $\quad 0$ to 100 mV <br> -3: $\quad 0$ to 25 mV | $\begin{gathered} \text { Pt100 : }-200.0 / 850.0^{\circ} \mathrm{C} \\ \left(-328 / 562^{\circ} \mathrm{F}\right) \\ \mathrm{Pt} 1000 \Omega:-200.0 / 595.0^{\circ} \mathrm{C} \\ \left(-328 / 1103^{\circ} \mathrm{F}\right) \\ \mathrm{jPt} 100 \Omega:-38.0 / 450.0^{\circ} \mathrm{C} \\ \left(-36 / 842^{\circ} \mathrm{F}\right) \\ \mathrm{Cu} .25 \Omega, \mathrm{Cu} .10 \Omega: \\ -200.0 / 260.0^{\circ} \mathrm{C} \\ \left(-328 / 500^{\circ} \mathrm{F}\right) \end{gathered}$ |
| Resolution | 12 bit (1 in 4096) | 15 bit (1 in 32768) |
| Maximum Inaccuracy | $\pm 1^{\circ} \mathrm{C}$ type $\mathrm{J}, \mathrm{K}, \mathrm{E}, \mathrm{T}$ thermocouples <br> $\pm 3^{\circ} \mathrm{C}$ type $\mathrm{R}, \mathrm{S}, \mathrm{B}, \mathrm{C}, \mathrm{P}$ thermocouples | $\pm 0.2 \%$ at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ |

## Special Input Module Chart

| Specification | F4-08THM |  |
| :--- | :--- | :--- |
| Channels | 8 |  |
| Input Ranges | Type J: | $-190 / 760^{\circ} \mathrm{C}\left(-310 / 1400^{\circ} \mathrm{F}\right)$ |
|  | Type E: | $-210 / 1000^{\circ} \mathrm{C}\left(-346 / 1832^{\circ} \mathrm{F}\right)$ |
|  | Type K: | $-150 / 1372^{\circ} \mathrm{C}\left(-238 / 2502^{\circ} \mathrm{F}\right)$ |
|  | Type R: | $65 / 1768^{\circ} \mathrm{C}\left(149 / 3214^{\circ} \mathrm{F}\right)$ |
|  | Type S: | $65 / 1768^{\circ} \mathrm{C}\left(149 / 3214^{\circ} \mathrm{F}\right)$ |
|  | Type T: | $-230 / 400^{\circ} \mathrm{C}\left(-382 / 752^{\circ} \mathrm{F}\right)$ |
|  | Type B: | $529 / 1820^{\circ} \mathrm{C}\left(984 / 3308^{\circ} \mathrm{F}\right)$ |
|  | Type N: | $-70 / 1300^{\circ} \mathrm{C}\left(-94 / 2372^{\circ} \mathrm{F}\right)$ |
|  | Type C: | $65 / 2320^{\circ} \mathrm{C}\left(149 / 4208^{\circ} \mathrm{F}\right)$ |
|  | $-1:$ | 0 to 50 mV |
|  | $-2:$ | 0 to 100 mV |
|  | $-3:$ | 0 to 25 mV |
| Resolution | 16 bit $(1$ in 65535$)$ |  |
| Maximum Inaccuracy | $\pm 3^{\circ} \mathrm{C}($ excluding thermocouple error $)$ |  |

Analog Input
Module Chart

| Specification | F4-04AD | F4-04ADS | F4-08AD |
| :--- | :--- | :--- | :--- |
| Channels | 4 | 4 | 8 |
| Input Ranges | $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$, <br> $1-5 \mathrm{~V}, 0-5 \mathrm{~V}, 0-10 \mathrm{~V}$, <br> $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$ | $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$, <br> $1-5 \mathrm{~V}, 0-5 \mathrm{~V}, 0-10 \mathrm{~V}$, <br> $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$ | $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$, <br> $1-5 \mathrm{~V}, 0-5 \mathrm{~V}, 0-10 \mathrm{~V}$, <br> $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$ |
| Resolution | 12 bit (1 in 4096) | 12 bit (1 in 4096) | 12 bit (1 in 4096) |
| Input Type | Single ended | Isolated | Single ended |
| Maximum Inaccuracy | $\pm 0.4 \%$ at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ <br> $\pm 0.55 \%$ at $0^{\circ}$ to $60^{\circ} \mathrm{C}$ <br> $\left(32^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ | $\pm 0.4 \%$ at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ <br> $\pm 0.7 \%$ at $0^{\circ}$ to $60^{\circ} \mathrm{C}$ <br> $\left(32^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ | $\pm 0.3 \%$ at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ <br> $\pm 0.5 \%$ at $0^{\circ}$ to $60^{\circ} \mathrm{C}$ <br> $\left(32^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |

## Analog Output Module Chart

| Specification | D4-02DA | F4-04DA | F4-04DA-1 |
| :---: | :---: | :---: | :---: |
| Channels | 2 | 4 | 4 |
| Output Ranges | 4-20 mA, 1-5V, 0-10V | $\begin{aligned} & 4-20 \mathrm{~mA}, 0-5 \mathrm{~V}, 0-10 \mathrm{~V} \\ & \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V} \end{aligned}$ | 4-20mA |
| Resolution | 12 bit (1 in 4096) | 12 bit (1 in 4096) | 12 bit (1 in 4096) |
| Output Type | Independent | Single ended | Single ended |
| Maximum Inaccuracy | $\pm 0.2 \% \text { at } 25^{\circ} \mathrm{C}$ | $\begin{aligned} & \pm 0.5 \% \text { at } 60^{\circ} \mathrm{C} \text { (unipo.) } \\ & \pm 0.7 \% \text { at } 60^{\circ} \mathrm{C} \text { (bipol.) } \\ & \pm 0.8 \% \text { at } 60^{\circ} \mathrm{C} \text { (curr.) } \end{aligned}$ | $\begin{gathered} \pm 0.1 \% \text { at } 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) \\ \pm 0.3 \% \text { at } 0 \text { to } 60^{\circ} \mathrm{C} \\ \left(32 \text { to } 140^{\circ} \mathrm{F}\right) \end{gathered}$ |
| Specification | F4-04DA-2 | F4-08DA-1 | F4-16DA-1 |
| Channels | 4 | 8 | 16 |
| Output Ranges | $\begin{aligned} & 0-5 \mathrm{~V}, 0-10 \mathrm{~V}, \pm 5 \mathrm{~V}, \\ & \pm 10 \mathrm{~V} \end{aligned}$ | 4-20mA | 4-20 mA |
| Resolution | 12 bit (1 in 4096) | 12 bit (1 in 4096) | 12 bit (1 in 4096) |
| Output Type | Single ended | Single ended | Single ended |
| Maximum Inaccuracy | $\begin{aligned} & \pm 0.2 \% \text { at } 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) \\ & \pm 0.4 \% \text { at } 0^{\circ} \text { to } 60^{\circ} \mathrm{C} \\ & \left(32^{\circ} \text { to } 140^{\circ} \mathrm{F}\right) \end{aligned}$ | $\begin{aligned} & \pm 0.2 \% \text { at } 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) \\ & \pm 0.4 \% \text { at } 0^{\circ} \text { to } 60^{\circ} \mathrm{C} \\ & \left(32^{\circ} \text { to } 140^{\circ} \mathrm{F}\right) \end{aligned}$ | $\begin{gathered} \pm 0.2 \% \text { at } 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) \\ \pm 0.4 \% \text { at } 0^{\circ} \text { to } 60^{\circ} \mathrm{C} \\ \left(32^{\circ} \text { to } 140^{\circ} \mathrm{F}\right) \end{gathered}$ |
| Specification | F4-04DAS-1 | F4-08DA-2 | F4-16DA-2 |
| Channels | 4 | 8 | 16 |
| Output Ranges | 4-20 mA | 0-5v, 0-10v | $\begin{aligned} & 0-5 \mathrm{v}, 0-10 \mathrm{v}, \\ & \text { Combination of both } \end{aligned}$ |
| Resolution | 16 bit (1 in 65536) | 12 bit (1 in 4096) | 12 bit (1 in 4096) |
| Output Type | Single ended | Single ended | Single ended |
| Maximum Inaccuracy | $\begin{array}{r}  \pm 0.07 \% \text { at } 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) \\ \pm 0.18 \% \text { at } 0^{\circ} \text { to } 60^{\circ} \mathrm{C} \\ \left(32^{\circ} \text { to } 140^{\circ} \mathrm{F}\right) \end{array}$ | $\begin{aligned} & \pm 0.2 \% \text { at } 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) \\ & \pm 0.4 \% \text { at } 0^{\circ} \text { to } 60^{\circ} \mathrm{C} \\ & \left(32^{\circ} \text { to } 140^{\circ} \mathrm{F}\right) \end{aligned}$ | $\begin{array}{r}  \pm 0.2 \% \text { at } 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) \\ \pm 0.4 \% \text { at } 0^{\circ} \text { to } 60^{\circ} \mathrm{C} \\ \left(32^{\circ} \text { to } 140^{\circ} \mathrm{F}\right) \end{array}$ |

## Glossary of Specification Terms

$\left.\begin{array}{ll}\text { Inputs or Outputs Per } & \begin{array}{l}\text { Indicates number of electrical input or output points per module and designates } \\ \text { current sinking, current sourcing, or either. }\end{array} \\ \text { Module }\end{array} \quad \begin{array}{l}\text { Number of electrical commons per module. A common is a connection to an input } \\ \text { cor output module which is shared by multiple I/O circuits. It is ususally in the return } \\ \text { path to the power supply of the I/O circuit. }\end{array}\right]$

## D4-08ND3S DC Input

| Inputs per module | 8 (sink/source) |
| :--- | :--- |
| Commons per module | 8 (isolated) |
| Input voltage range | $20-52.8 \mathrm{VDC}$ |
| Peak voltage | 52.8 VDC |
| ON voltage level | $>18 \mathrm{~V}$ |
| OFF voltage level | $<7 \mathrm{~V}$ |
| Input impedance | $4.8 \mathrm{~K} \Omega$ |
| Input current @ $24 / 48 \mathrm{VDC}$ | $5 \mathrm{~mA} / 10 \mathrm{~mA}$ |
| Minimum ON current | 3.5 mA |
| Maximum OFF current | 1.5 mA |
| Base power required 5 V | 100 mA max |
| OFF to ON response | $3-10 \mathrm{~ms}$ |
| ON to OFF response | $3-12 \mathrm{~ms}$ |
| Terminal type | Removable |
| Status indicators | Logic Side |
| Weight | 8.8 oz. (250 g) |



| Inputs per module | 16 (current sourcing) |
| :--- | :--- |
| Commons per module | 2 (isolated) |
| Input voltage range | $10.2-26.4 \mathrm{VDC}$ |
| Peak voltage | 26.4 VDC |
| ON voltage level | $>9.5 \mathrm{VDC}$ |
| OFF voltage level | $<4.0 \mathrm{VDC}$ |
| Input impedance | $3.2 \mathrm{~K} \Omega$ @ 12VDC |
|  | $2.9 \mathrm{~K} \Omega$ @ 24 VDC |
| Input current @ 12 / 24VDC | $3.8 \mathrm{~mA} / 8.3 \mathrm{~mA}$ |
| Minimum ON current | 3.5 mA |
| Maximum OFF current | 1.5 mA |
| Base power required 5V | 150 mA max |
| OFF to ON response | $1-7 \mathrm{~ms} \mathrm{(2.3} \mathrm{typical)}$ |
| ON to OFF response | $2-12 \mathrm{~ms} \mathrm{(4.6} \mathrm{typical)}$ |
| Terminal type | Removable |
| Status indicators | Logic Side |
| Weight | 8.8 oz. (250 g) |



## D4-16ND2F DC Input

| Inputs per module | 16 (current sourcing) |
| :--- | :--- |
| Commons per module | 2 (isolated) |
| Input voltage range | $10.2-26.4 \mathrm{VDC}$ |
| Peak voltage | 26.4 VDC |
| ON voltage level | $>9.5 \mathrm{VDC}$ |
| OFF voltage level | $<4.0 \mathrm{VDC}$ |
| Input impedance | $3.2 \mathrm{~K} \Omega$ @ 12VDC |
|  | $2.9 \mathrm{~K} \Omega$ @ 24 VDC |
| Input current @ 12 / 24 VDC | $3.8 \mathrm{~mA} / 8.3 \mathrm{~mA}$ |
| Minimum ON current | 3.5 mA |
| Maximum OFF current | 1.5 mA |
| Base power required 5V | 150 mA max |
| OFF to ON response | 1 ms |
| ON to OFF response | 1 ms |
| Terminal type | Removable |
| Status indicators | Logic Side |
| Weight | 8.8 oz. (250 g) |


| Inputs per module | 8 or 16, selectable |
| :--- | :--- |
| Base power required 5V | 150 mA Max |
| Terminal type | None |
| Status indicators | Logic Side |
| Weight | 8.8 oz. $(250 \mathrm{~g})$ |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



| INPUT SIMULATOR |  |  |  |
| :---: | :---: | :---: | :---: |
| $\left\ulcorner\stackrel{8}{\mathrm{~A}} \square{ }^{-16}{ }^{\mathrm{B}}\right.$ |  |  |  |
|  |  |  |  |
| 0 | 4 | 0 | 4 |
| 1 | 5 | 1 | 5 |
| 2 | 6 | 2 | 6 |
| 3 | 7 | 3 | 7 |
| D4-16SIM |  |  |  |

## D4-32ND3-1, 24VDC Input

| Inputs per module | 32 (sink/source) |
| :--- | :--- |
| Commons per module | 4 (isolated) |
| Input voltage range | $20-28 \mathrm{VDC}$ |
| Peak voltage | 30 VDC |
| ON voltage level | $>19 \mathrm{~V}$ |
| OFF voltage level | $<10 \mathrm{~V}$ |
| Input impedance | $4.8 \mathrm{~K} \Omega$ |
| Input current | 5 mA |
| Minimum ON current | 3.5 mA |
| Maximum OFF current | 1.6 mA |
| Base power required 5V | 150 mA max |
| OFF to ON response | $2-10 \mathrm{~ms}$ |
| ON to OFF response | $2-10 \mathrm{~ms}$ |
| Terminal type | Removable, 40 pin conn. |
| Status indicators | Logic Side |
| Weight | 6.6 oz. (190 g) |

D4-32ND3-2 5-12VDC Input

| Inputs per module | 32 (sink/source) |
| :--- | :--- |
| Commons per module | 4 (isolated) |
| Input voltage range | $4.75-13.2 \mathrm{VDC}$ (TTL, CMOS) |
| Peak voltage | 15 VDC |
| ON voltage level | $>4 \mathrm{~V}$ (use pullup R for TTL in) |
| OFF voltage level | $<2 \mathrm{~V}$ |
| Input impedance | $1.6 \mathrm{~K} \Omega$ |
| Input current | $3.1 \mathrm{~mA} @ 5 \mathrm{~V}, 7.5 \mathrm{~mA} @ 12 \mathrm{~V}$ |
| Minimum ON current | 1.8 mA |
| Maximum OFF current | 0.8 mA |
| Base power required 5 V | 150 mA max |
| OFF to ON response | $1-4 \mathrm{~ms}$ |
| ON to OFF response | $1-4 \mathrm{~ms}$ |
| Terminal type | Removable, 40 pin conn. |
| Status indicators | Logic Side |
| Weight | 6.6 oz. (190 g) |




## D4-64ND2, 24 VDC Input Module



I/O Wiring and Specifications

## D4-08NA 110-220VAC Input D4-16NA 110VAC Input

| Inputs per module | 8 |
| :--- | :--- |
| Commons per module | 2 (isolated) |
| Input voltage range | $80-265 \mathrm{VAC}$ |
| Peak voltage | 265 VAC |
| AC frequency | $47-63 \mathrm{~Hz}$ |
| ON voltage level | $>70 \mathrm{~V}$ |
| OFF voltage level | $<30 \mathrm{~V}$ |
| Input impedance | $12 \mathrm{~K} \Omega$ |
| Input current | $8.5 \mathrm{~mA} @ 100 \mathrm{VAC}$ |
| Minimum ON current | 5 mA |
| Maximum OFF current | 2 mA |
| Base power required 5 V | 100 mA max |
| OFF to ON response | $5-30 \mathrm{~ms}$ |
| ON to OFF response | $10-50 \mathrm{~ms}$ |
| Terminal type | Removable |
| Status indicators | Logic Side |
| Weight | 8.4 oz. (240 g) |


| Inputs per module | 16 |
| :--- | :--- |
| Commons per module | 2 (isolated) |
| Input voltage range | $80-132 \mathrm{VAC}$ |
| Peak voltage | 132 VAC |
| AC frequency | $47-63 \mathrm{~Hz}$ |
| ON voltage level | $>70 \mathrm{~V}$ |
| OFF voltage level | $<20 \mathrm{~V}$ |
| Input impedance | 14.5 mA @120VAC |
| Input current | 7 mA |
| Minimum ON current | 2 mA |
| Maximum OFF current | 150 mA max |
| Base power required 5V | $5-30 \mathrm{~ms}$ |
| OFF to ON response | $10-50 \mathrm{~ms}$ |
| ON to OFF response | Removable |
| Terminal type | Logic Side |
| Status indicators | 9.5 oz. (270 g) |
| Weight |  |



## D4-16NA-1 220VAC Input

| Inputs per module | 16 |
| :--- | :--- |
| Commons per module | 2 (isolated) |
| Input voltage range | $187-238 \mathrm{VAC}$ |
| Peak voltage | 265 VAC |
| AC frequency | $47-63 \mathrm{~Hz}$ |
| ON voltage level | $>150 \mathrm{~V}$ |
| OFF voltage level | $<40 \mathrm{~V}$ |
| Input impedance | $22 \mathrm{~K} \Omega$ |
| Input current | $10.0 \mathrm{~mA} @ 220 \mathrm{VAC}$ |
| Minimum ON current | 7 mA |
| Maximum OFF current | 2 mA |
| Base power required 5V | 150 mA max |
| OFF to ON response | $5-30 \mathrm{~ms}$ |
| ON to OFF response | $10-50 \mathrm{~ms}$ |
| Terminal type | Removable |
| Status indicators | Logic Side |
| Weight | 9.5 oz. (270 g) |



I/O Wiring and Specifications

## D4-16NE3 12-24VAC/DC Input

| Inputs per module | 16 (sink/source) |
| :--- | :--- |
| Commons per module | 2 (isolated) |
| Input voltage range | $10.2-26.4 \mathrm{VAC} / \mathrm{VDC}$ |
| Peak voltage | $37.5 \mathrm{VAC} / \mathrm{VDC}$ |
| AC frequency | $47-63 \mathrm{~Hz}$ |
| ON voltage level | $>9.5 \mathrm{~V}$ |
| OFF voltage level | $<3.0 \mathrm{~V}$ |
| Input impedance @ 12V/24V | $3.2 \mathrm{~K} \Omega / 2.9 \mathrm{~K} \Omega$ |
| Input current @ 12V / 24V | $3.8 \mathrm{~mA} / 8.3 \mathrm{~mA}$ |
| Minimum ON current | 4 mA |
| Maximum OFF current | 1.5 mA |
| Base power required 5 V | 150 mA max |
| OFF to ON response | $5-40 \mathrm{~ms}$ |
| ON to OFF response | $10-50 \mathrm{~ms}$ |
| Terminal type | Removable |
| Status indicators | Logic Side |
| Weight | 8.8 oz. (250 g) |

F4-08NE3S 90-150VAC/DC In

| Inputs per module | 8 (sink/source) |
| :--- | :--- |
| Commons per module | 8 (isolated) |
| Input voltage range | $90-150 \mathrm{VAC} / \mathrm{VDC}$ |
| Peak voltage | 350 peak < 1ms |
| AC frequency | $47-63 \mathrm{~Hz}$ |
| ON voltage level | $>90 \mathrm{VDC} / 75 \mathrm{VAC}$ |
| OFF voltage level | $<60 \mathrm{VDC} / 45 \mathrm{VAC}$ |
| Input impedance | $22 \mathrm{~K} \Omega$ |
| Input current | 5.5 mA @ 120V |
| Minimum ON current | 4 mA |
| Maximum OFF current | 2 mA |
| Base power required 5V | 90 mA max |
| OFF to ON response | 8 ms |
| ON to OFF response | 15 ms |
| Terminal type | Removable |
| Status indicators | Logic Side |
| Weight | 9 oz. (256 g) |



## D4-08TD1 12-24 VDC Output

| Outputs per module | 8 (current sinking) |
| :--- | :--- |
| Commons per module | 2 internally connected |
| Operating voltage | $10.2-26.4 \mathrm{VDC}$ |
| Output type | NMOS FET (open drain) |
| Peak voltage | 40 VDC |
| ON voltage drop | 0.5 VDC @ 2A, 0.2 VDC @1A |
| Max current (resistive) | $2 \mathrm{~A} /$ point, 5A / common |
| Max leakage current | 0.1 mA @ 40 VDC |
| Max inrush current | 12 A for $10 \mathrm{~ms}, 6 \mathrm{~A}$ for 100 ms |
| Minimum load | 0.2 mA |
| Base power required 5 V | 150 mA max |
| External DC required | $24 \mathrm{VDC} \pm 10 \% @ 35 \mathrm{~mA}$ |
| OFF to ON response | 1 ms |
| ON to OFF response | 1 ms |
| Terminal type | Removable |
| Status indicators | Logic Side |
| Weight | 8.4 oz. (240 g) |
| Fuses (non-replaceable) | 1 (7A) per common |




F4-08TD1S 24-150 vDC Isolated Out

| Outputs per module | 8 (current sinking) |
| :---: | :---: |
| Commons per module | 4 (isolated) |
| Operating voltage | 24-150VDC |
| Output type | MOS FET |
| Peak voltage | 200 VDC, <1mS |
| ON voltage drop | 1VDC @ 2A |
| Max current | 2A / point, 4A / common |
| Max leakage current | $5 \mu \mathrm{~A}$ |
| Max inrush current | $30 \mathrm{~A} / 1 \mathrm{~ms}, 6 \mathrm{~A} / 10 \mathrm{~ms}$, 3A/ 100 ms |
| Minimum load | N/A |
| Base power required 5V | 295 mA max |
| External DC required | None |
| OFF to ON response | $25 \mu \mathrm{~s}$ |
| ON to OFF response | 25 ¢ |
| Terminal type | Removable |
| Status indicators | Logic Side |
| Weight | 10 oz. (282 g) |
| Fuses (non-replaceable) | 1 (3A) per output |
|  |  |

D4-16TD1 5-24 VDC Output

| Outputs per module | 16 (current sinking) |  |  |
| :---: | :---: | :---: | :---: |
| Commons per module | 2 internally connecte |  |  |
| Operating voltage / peak | 4.5-26.4VDC, 40 VDC Peak |  |  |
| Output type | NPN Open collector |  |  |
| ON voltage drop | 0.5V @ 0.5A, 0.2V @ 0.1A |  |  |
| Max current (resistive) | 0.5A / point, 3A / common |  |  |
| Max leakage current | 0.1mA @ 40VDC |  |  |
| Max inrush current | 2A for $10 \mathrm{~ms}, 1 \mathrm{~A}$ for 100 ms |  |  |
| Minimum load | 0.2 mA |  |  |
| Base power required 5V | 200mA max |  |  |
| External DC required | 24VDC $\pm 10 \%$ @125mA |  |  |
| OFF to ON response | 0.5 ms |  |  |
| ON to OFF response | 0.5 ms |  |  |
| Terminal type | Removable |  |  |
| Status indicators | Logic Sid |  |  |
| Weight | 9.5 oz. (270 g) |  |  |
| Fuses (non-replaceable) | 1 (5A) per common |  |  |
|  |  |  |  |



D4-16TD2, 12-24 VDC Output

| Outputs per module 16 (current | sourcing) |
| :---: | :---: |
| Commons per module 2 (isolated) |  |
| Operating voltage / peak $10.2-26.4$ | 4 VDC, 40 VDC Peak |
| Output type | tter Follower |
| ON voltage drop 1.5 VDC | 0.5A |
| Max current (resistive) $0.5 \mathrm{~A} / \mathrm{po}$ <br>  $50^{\circ} \mathrm{C}, 2$ | 3A / common @ /common @ 60은 |
| Max leakage current 0.1 mA @ | 40 VDC |
| Max inrush current $\quad 2 \mathrm{~A}$ for 10 | ms, 1A for 100 ms |
| Minimum load 0.2 mA |  |
| Base power required 5V 400 mA max |  |
| External DC required None |  |
| OFF to ON response 1 ms |  |
| ON to OFF response |  |
| Terminal type $\quad$ Removab |  |
| Status indicators $\quad$ Logic Side |  |
| Weight 9.8 oz. (280 | $80 \mathrm{~g})$ |
| Fuses (non-replaceable) 1 (5A) p | common |
|  | 12-24VDC <br> OUTPUT |

D4-32TD1, 5-24VDC Output

| Outputs per module | 32 (current sinking) |
| :--- | :--- |
| Commons per module | 4 (isolated) |
| Operating voltage | $4.75-26.4 \mathrm{VDC}$ |
| Output type | NPN Open Collector |
| Peak voltage | 36 VDC |
| ON voltage drop | $0.6 \mathrm{VDC} @ 0.2 \mathrm{~A}$ |
| Max current (resistive) | $0.2 \mathrm{~A} \mathrm{/} \mathrm{point}, \mathrm{1.6A} \mathrm{/} \mathrm{common}$ |
| Max leakage current | 0.1 mA @ 36 VDC |
| Max inrush current | 1 A for $10 \mathrm{~ms}, 0.5 \mathrm{~A}$ for 100 ms |
| Minimum load | 0.1 mA |
| Base power required 5 V | 250 mA max |
| External DC required | $24 \mathrm{VDC} \pm 10 \%, 140 \mathrm{~mA} \mathrm{max}$ |
| OFF to ON response | 0.1 ms |
| ON to OFF response | 0.1 ms |
| Terminal type | Removable |
| Status indicators | Logic Side |
| Weight | 6.7 oz. (190 g) |
| Fuses | None |

D4-32TD1-1, 5-15VDC Output

| Outputs per module | 32 (current sinking) |
| :---: | :---: |
| Commons per module | 4 (isolated) |
| Operating voltage | 5-15 VDC |
| Output type | NPN Open Collector (w / pullup) |
| Peak voltage | 16.5 VDC |
| ON voltage drop | 0.4 VDC @ 0.1A |
| Max current (resistive) | 0.09A/pt, 0.72A/com, 2.88A/ mod. |
| Max leakage current | 0.01 mA @ 16.5 VDC |
| Max inrush current | 0.5 A for $10 \mathrm{~ms}, 0.2 \mathrm{f}$ for 100 ms |
| Minimum load | 0.1 mA |
| Base power req., 5V | 250mA max |
| External DC required | 5-15VDC $\pm 10 \%, 700 \mathrm{~mA}$ max |
| OFF to ON response | 0.1 ms |
| ON to OFF response | 0.1 ms |
| Terminal type | Removable |
| Status indicators | Logic Side |
| Weight | 6.7 oz. (190 g) |
| Fuses | None |
|  |  |

## D4-32TD2, 12-24 VDC Output Module

| Outputs per module | 32 (current sourcing) |  | External DC required | $10.8-26.4 \mathrm{VDC}$ <br> 1A / common <br> including load |
| :--- | :--- | :--- | :--- | :--- |
| Commons per module |  | 4 (isolated) |  |  |



Only 16 status points can be displayed at one time on the front of the module.
In the A - B position the status of the first group of 16 output points (A0-A7, B0-B7) is displayed.
In the C-D position the status of the second group of 16 output points (C0-C7, D0-D7) is displayed.

# D4-64TD1, TTL/CMOS/5-24 VDC Output Module 

| Module Location | CPU base only * | Minimum load | 0.1 mA |
| :---: | :---: | :---: | :---: |
| Outputs per module | 64 (current sinking) | Base power required 5V | 800mA max |
| Commons per module | 8 (isolated) |  |  |
| Operating voltage | 4.75-26.5 VDC |  |  |
| Output type | NPN Open Collector | External DC required | $\begin{aligned} & 24 \mathrm{VDC} \pm 10 \%, \\ & (800 \mathrm{~mA}+50 \mathrm{~mA} \text { per } \\ & \text { common) } \\ & 7.0 \mathrm{~A} \text { total max } \end{aligned}$ |
| Peak voltage | 36 VDC | OFF to ON response | $<0.1 \mathrm{~ms}$ |
| ON voltage drop | 0.6 VDC @ 0.1A | ON to OFF response | $<0.2 \mathrm{~ms}$ |
| Max current (resistive) | $0.1 \mathrm{~A} / \mathrm{point}$ 1.0A / common 8.0A / module | Terminal type | 2, Removable 40-pin connectors (sold sep.) |
|  |  | Status indicators | Logic Side |
| Max leakage current | 0.01 mA @ 36 VDC | Weight | 7.4 oz. (210 g) |
| Max inrush current | 1 A for 1 ms 700 mA for 100 ms | Fuses | None |



I/O Wiring and Specifications

## D4-08TA, 18-220VAC Output D4-16TA, 18-220VAC Output

| Outputs per module 8 | 8 |
| :---: | :---: |
| Commons per module 2 (isolated) | 2 (isolated) |
| Operating voltage $15-265 \mathrm{VAC}$ | 15-265VAC |
| Output type $\quad$ SSR (triac) | SSR (triac) |
| Peak voltage ${ }^{\text {a }}$ 265VAC | 265VAC |
| AC frequency $\quad 47-63 \mathrm{~Hz}$ | $47-63 \mathrm{~Hz}$ |
| ON voltage drop 1.5 VAC @ | 1.5VAC @ 2A |
| Max current 2A / point, <br> $2 \mathrm{AA} /$ comm | 2A / point, 5A / com. @ $30^{\circ} \mathrm{C}$ 2A / common @ $60^{\circ} \mathrm{C}$ |
| Max leakage current 5 mA @ 265 | 5mA @ 265VAC |
| Max inrush current $\quad$ 30A for 10 | 30A for $10 \mathrm{~ms}, 10 \mathrm{~A}$ for 100 ms |
| Minimum load 10 mA | 10 mA |
| Base power required 5V 250 mA max | 250 mA max |
| OFF to ON response 1 ms | 1 ms |
| ON to OFF response $\quad 1 \mathrm{~ms}+1 / 2$ | $1 \mathrm{~ms}+1 / 2$ AC cycle |
| Terminal type $\quad$ Removable | Removable |
| Status indicators $\quad$ Logic Side | Logic Side |
| Weight $11.6 \mathrm{oz}. \mathrm{(330}$ | 11.6 oz. ( 330 g ) |
| Fuses (non-replaceable) 1 (8A) per | 1 (8A) per common |
|    |  |


| Outputs per module 16 | 16 |
| :---: | :---: |
| Commons per module 2 (isolated) | 2 (isolated) |
| Operating voltage 15-265VAC | 15-265VAC |
| Output type | SSR (triac) |
| Peak voltage 265 VAC | 265VAC |
| AC frequency $\quad 47-63 \mathrm{~Hz}$ | $47-63 \mathrm{~Hz}$ |
| ON voltage drop 1.5 VAC @ | 1.5 VAC @ 0.5A |
| Max current $0.5 \mathrm{~A} / \mathrm{pt}, 3 \mathrm{~A}$ <br>  $2 \mathrm{~A} / \mathrm{commo}$ | 0.5A / pt, 3A / common @ $45^{\circ} \mathrm{C}$ 2A / common @ $60^{\circ} \mathrm{C}$ |
| Max leakage current 4mA @ 265 | 4mA @ 265VAC |
| Max inrush current | 15 A for $10 \mathrm{~ms}, 10 \mathrm{~A}$ for 100 ms |
| Minimum load 10 mA | 10 mA |
| Base power required 5V 450 mA max | 450 mA max |
| OFF to ON response 1 ms | 1 ms |
| ON to OFF response | $1 \mathrm{~ms}+1 / 2$ AC cycle |
| Terminal type $\quad$ Removable | Removable |
| Status indicators $\quad$ Logic Side | Logic Side |
| Weight $12.2 \mathrm{oz}$. (35 | 12.2 oz. (350 g) |
| Fuses (non-replaceable) 1 (5A) per c | 1 (5A) per common |
|  |  |

## D4-08TR, Relay Output

| Outputs per module |  |  | 8 relays |
| :---: | :---: | :---: | :---: |
| Commons per module |  |  | 2 (isolat |
| Operating voltage |  |  | 5-30VD |
| Output type |  |  | Form A |
| Peak voltage |  |  | 30VDC |
| AC frequency |  |  | 47-63 H |
| Max current (resistive) |  |  | 2A / poin |
| Max leakage current |  |  | 0.1 mA @ |
| Max inrush current |  |  | 2A |
| Minimum load |  |  | 5 mA |
| Base power required 5V |  |  | 550 mA |
| External DC required |  |  | None |
| OFF to ON response |  |  | 12 ms |
| ON to OFF response |  |  | 12 ms |
| Terminal type |  |  | Removab |
| Status indicators |  |  | Lo |
| Weight |  |  | 9.1 oz |
| Fuses (non-replaceable) |  |  | 1 (8A) p |
| Typical Relay Life (Operations) |  |  |  |
| Maximum Resistive or Inductive Inrush Load Current | Operating Voltage |  |  |
|  | 30VDC | 125 VAC | 250VAC |
| 2A resistive | 100K | 300 K | 200 K |
| 2A inductive | 100K | 80K | 60K |
| 0.5 A resistive 0.5 A inductive | 800 K 300 K | 1 M 300 K | 800 K 200 K |



## F4-08TRS-1, Relay Output



F4-08TRS-2, Relay Output

| Outputs per module | 8 relays |
| :--- | :--- |
| Commons per module | 8 (isolated) |
| Operating voltage | $12-30 \mathrm{VDC}, 12-250 \mathrm{VAC}$ |
| Output type: 4 Form C (SPDT), 4 Form A (SPST-NO) |  |
| Peak voltage | $30 \mathrm{VDC} / 250 \mathrm{VAC}$ @5A |
| AC frequency | $47-63 \mathrm{~Hz}$ |
| Max current (resistive) | $5 \mathrm{~A} /$ point, 40A / module |
| Max inrush current | 10 A |
| Minimum load | 100 mA @12 VDC |
| Base power required 5V | 575 mA max |
| External DC required | None |
| OFF to ON response | 7 ms |
| ON to OFF response | 9 ms |
| Terminal type | Removable |
| Status indicators | Logic Side |
| Weight | 13.8 oz. (390 g) |
| Fuses, (user replaceable) | 1 (10A, 250V) per common <br> $19379-K-10 \mathrm{~A} \mathrm{Wickman}$ |



D4-16TR, Relay Output

| Outputs per module | 16 relays |
| :--- | :--- |
| Commons per module | 2 (isolated) |
| Operating voltage | $5-30 \mathrm{VDC} / 5-250 \mathrm{VAC}$ |
| Output type | Form A (SPST-NO) |
| Peak voltage | $30 \mathrm{VDC} / 256 \mathrm{VAC}$ |
| AC frequency | $47-63 \mathrm{~Hz}$ |
| Max current (resistive) | $1 \mathrm{~A} /$ point, 5A / common |
| Max leakage current | 0.1 mA @ 265VAC |
| Max inrush current | 4 A |
| Minimum load | 5 mA |
| Base power required 5V | 1000 mA max |
| External DC required | None |
| OFF to ON response | 10 ms |
| ON to OFF response | 10 ms |
| Terminal type | Removable |
| Status indicators | Logic Side |
| Weight | 10.9 oz. (310 g) |
| Fuses (non-replaceable) | 1 (8A) per common |


| Typical Relay Life (Operations) |  |  |  |
| :---: | :---: | :---: | :---: |
| Maximum Resistive or Inductive Inrush Load Current | Operating Voltage |  |  |
|  | 30VDC | 125VAC | 250VAC |
| 1 A resistive | >1M | 500K | 300K |
| 1 A inductive | 400K | 200K | 100K |
| 0.5 A resistive | >2M | 800K | 500K |
| 0.5 A inductive | >1M | 300K | 200k |



## F4-04AD 4-Channel Analog Input

| Number of Channels | 4 |
| :---: | :---: |
| Input Type | Single-ended or differential |
| Input Ranges | 0-5, 1-5, 0-10, $\pm 5, \pm 10 \mathrm{VDC}, 0-20,4-20 \mathrm{~mA}$. |
| Resolution | 12 bit (0 to 4095), unipolar 13 bit ( $\pm 4095$ ), bipolar |
| Input Impedance | $20 \mathrm{M} \Omega$ minimum, voltage input $250 \Omega, 1 / 2 \mathrm{~W}, \pm 0.1 \%, 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ current input |
| Max. Continuous Overload | $\pm 50 \mathrm{VDC}$, voltage input, $\pm 45 \mathrm{~mA}$, current input |
| Recommended External Fuse | 0.032A, Series 217 fast acting, current inputs |
| Common Mode Voltage Range | $\pm 10 \mathrm{~V}$ maximum |
| Linearity | $\pm 0.025 \%$ of span ( $\pm 1$ count maximum, unipolar) |
| Input Stability | $\pm 1 / 2$ count |
| Cross Talk | -80 dB, 1/2 count maximum |
| Full Scale Calibration Error | $\pm 12$ counts maximum, voltage input <br> $\pm 16$ counts maximum, at 20.000 mA current input |
| Offset Calibration Error | $\pm 1$ count maximum, voltage input <br> $\pm 2$ counts maximum, at 4.000 mA current input |
| Maximum Inaccuracy | $0.4 \%$ maximum @ $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ <br> $0.55 \%$ maximum @ 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $140^{\circ} \mathrm{F}$ ) |
| Conversion Time | < 6 mS per selected channel |
| Noise Rejection Ratio | Normal mode: -3 dB @ $50 \mathrm{~Hz},-6 \mathrm{~dB} /$ octave Common mode: -70 dB , DC to 12 kHz |


| PLC Update Rate | 4 channel per scan max. |
| :--- | :--- |
| Digital Input Points Required <br> 16 or 32-bit mode | 16 or $32(X)$ input points <br> 12 data bits, 4 bits optional for two's <br> complement mode, 4 channel select bits, <br> 12 bits unused in 32 bit mode |
| Power Budget Requirement | 85 mA (power from base) |
| External Power Supply | $24 \mathrm{VDC}, \pm 10 \%, 100 \mathrm{~mA}$, class 2 |
| Operating Temperature | 0 to $60^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |
| Storage Temperature | -20 to $70^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Relative Humidity | 5 to $95 \%($ non-condensing $)$ |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810 C 514.2 |
| Shock | MIL STD 810 C 516.2 |
| Insulation Resistance | $10 \mathrm{M} \Omega, 500$ VDC |
| Noise Immunity | NEMA ICS3-304 |

## F4-04AD 4-Channel Analog Input Module

NOTE 1: Shields should be grounded at the signal source.
NOTE 2: Unused channels should be shorted for best noise immunity.
NOTE 3: When a differential input is not used, OV should be connected to C of the channel.


## F4-04ADS 4-Channel Isolated Analog Input

## Input Specifications

| Number of Channels | 4 |
| :--- | :--- |
| Input Ranges | $0-5 \mathrm{~V}, 0-10 \mathrm{~V}, 1-5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$, <br> $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ |
| Resolution | 12 bit (1 in 4096 ) |
| Conversion Method | Successive approximation |
| Input Type | Differential |
| Max. Common Mode Voltage | $\pm 750 \mathrm{~V}$ peak continuous transformer isolation |
| Noise Rejection Ratio | Common mode: -100 dB at 60 Hz |
| Active Low-Pass Filtering | -3 dB at $20 \mathrm{~Hz},-12 \mathrm{~dB}$ per octave |
| Input Impedance | $250 \Omega \pm 0.1 \%, 1 / 2 \mathrm{~W}$ current input |
| Absolute Maximum Ratings | $\pm 45 \mathrm{~mA}$, current input |
| Conversion Time | 1 mS per selected channel |
| Linearity Error | $\pm 1$ count ( $0.025 \%$ of full scale) maximum |
| Full Scale Calibration Error | $\pm 8$ counts maximum (Vin $=20 \mathrm{~mA}$ ) |
| Offset Calibration Error | \pm 8 counts maximum (Vin $=4 \mathrm{~mA})$ |

General Specifications

| PLC Update Rate | 4 channel per scan max. |
| :--- | :--- |
| Digital Input Points Required | 12 binary data bits, 4 active channel <br> indicator bits |
| Accuracy vs. Temperature | $\pm 100$ ppm $/{ }^{\circ} \mathrm{C}$ maximum full scale (including maximum <br> offset) |
| Power Budget Requirement | $270 \mathrm{~mA} @ 5 \mathrm{VDC}$ (from base) |
| External Power Supply | $24 \mathrm{VDC}, \pm 10 \%, 120 \mathrm{~mA}$, class 2 |
| Recommended Fuse | 0.032 A, Series 217 fast-acting, current <br> inputs |
| Operating Temperature | 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |
| Storage Temperature | -20 to $70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Relative Humidity | 5 to $95 \%($ non-condensing $)$ |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810 C 514.2 |
| Shock | MIL STD 810 C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

## F4-04ADS 4-Channel Isolated Analog Input Module

Wiring
Diagram


## F4-08AD 8-Channel Analog Input

Input Specifications

| Number of Channels | 8, single ended (one common) |
| :--- | :--- |
| Input Ranges | $0-5 \mathrm{~V}, 0-10 \mathrm{~V}, 1-5 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$, <br> $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ |
| Resolution | 12 bit (1 in 4096 ) |
| Active Low-pass Filtering | -3 dB at $20 \mathrm{~Hz},-12 \mathrm{~dB}$ per octave |
| Input Impedance | 250 ohms $\pm 0.1 \%, 1 / 2 \mathrm{~W}$ current input <br> $>20 \mathrm{Megohms}$ voltage input, 1 Megohm minimum |
| Absolute Maximum Ratings | $\pm 45 \mathrm{~mA}$, current input <br> $\pm 75 \mathrm{~V}$, voltage input |
| Conversion Time | 0.4 ms per channel (module conversion) <br> 1 ms per selected channel minimum (CPU) |
| Linearity Error (End to End) | $\pm 1$ count (0.025\% of full scale) maximum |
| Input Stability | $\pm 1 / 2$ count |
| Full Scale Calibration Error (Offset er- | $\pm 12$ counts maximum , voltage input |
| ror not included) | $\pm 12$ counts maximum, @ 20mA current input |
| Offset Calibration Error | $\pm 2$ counts maximum, unipolar voltage input |
|  | $\pm 4$ counts maximum, bipolar voltage input <br>  |

General Specifications

| PLC Update Rate | 8 Channel per scan max. |
| :--- | :--- |
| Digital Input Points Required | $16(X)$ input points total <br> 12 binary data bits, 3 active channel bits, |
| Power Budget Requirement | 75 mA (power from base) |
| External Power Supply | $18-30$ VDC, 90 mA, class 2 |
| Recommended Fuse | 0.032 A, Series 217 fast-acting, current <br> inputs |
| Accuracy vs. Temperature | $\pm 50$ ppm $/{ }^{\circ} \mathrm{C}$ maximum full scale (including maximum <br> offset change of 2 counts) |
| Operating Temperature | 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |
| Storage Temperature | -20 to $70^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Relative Humidity | 5 to $95 \%$ (non-condensing) |
| Environmental Air | No corrosive gases permitted |
| Vibration | MIL STD 810 C 514.2 |
| Shock | MIL STD 810 C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

One count in the specification table is equal to one least significant bit of the analog data (1 in 4096).

## F4-08AD 8-Channel Analog Input Module

NOTE 1: Shields should be grounded at the signal source.
NOTE 2: Unused channels should be connected to OV or have current jumpers installed.


More than one external power supply can be used (see channel 8).
If the power supply common of an external power supply is not connected to 0 V on the module, then the output of the external transmitter must be isolated. To avoid "ground loop" errors, recommended 4-20mA transmitter types are:

2 or 3 wire: Isolation between input signal and power supply.
4 wire: Isolation between input signal, power supply, and $4-20 \mathrm{~mA}$ output.

## D4-02DA 2-Channel Analog Output

Output Specifications

## General Module Specifications

| Number of Channels | 2 (independent) |
| :--- | :--- |
| Output Ranges | $0-10 \mathrm{~V}, 1-5 \mathrm{~V}, 4-20 \mathrm{~mA}$ |
| Resolution | 12 bit (1 in 4096 ) |
| Output Type | Single ended |
| Output Impedance | $0.5 \Omega$ maximum, voltage output |
| Output Current | 5 mA maximum, voltage output |
| Load Impedance | $550 \Omega$ max., $5.0 \Omega$ min.,current output, <br> $2 \mathrm{~K} \Omega$ minimum, voltage output |
| Linearity | $\pm 0.1 \%$ maximum |
| Accuracy vs. Temperature | $\pm 70$ ppm $/{ }^{\circ} \mathrm{C}$ maximum |
| Maximum Inaccuracy | $\pm 0.2 \%$ maximum at $25^{\circ} \mathrm{C}$ |
| Conversion Method | Integration |
| Conversion Time | Start of scan, $30 \mu \mathrm{~S}+$ one scan |


| PLC Update Rate | 1 or 2 channels per scan |
| :--- | :--- |
| Digital Output Points Required | $32(\mathrm{Y})$ output points <br> 12 binary data bits per channel (24 bits total with 8 un- <br> used bits) |
| Power Budget Requirement | 250 mA (from base) |
| External Power Supply | $24 \mathrm{VDC}, \pm 10 \%, 300 \mathrm{~mA}$, class 2 |
| Operating Temperature | 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |
| Storage Temperature | -20 to $70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Relative Humidity | 5 to $95 \%$ (non-condensing) |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810 C 514.2 |
| Shock | MIL STD 810 C 516.2 |
| Insulation Resistance | $10 \mathrm{MQ}, 500 \mathrm{VDC}$ |
| Noise Immunity | NEMA ICS3-304 |

## D4-02DA 2-Channel Analog Output Module



## F4-04DA 4-Channel Analog Output

## Output Specifications

General Module Specifications

| Number of Channels | 4 |
| :---: | :---: |
| Output Ranges | 0-5V, 0-10V, $\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 4-20 \mathrm{~mA}$ |
| Resolution | 12 bit (1 in 4096) |
| Conversion Method | Successive Approximation |
| Output Type | Single ended, 1 common |
| Output Impedance | $0.2 \Omega$ typical, voltage output |
| Load Impedance | $2 \mathrm{~K} \Omega$ minimum, voltage output $0 \Omega$ minimum, current output |
| Maximum Load / Voltage | $680 \Omega / 18 \mathrm{~V}, 1 \mathrm{~K} \Omega / 24 \mathrm{~V}, 1.5 \mathrm{~K} \Omega / 36 \mathrm{~V}$, current output |
| Voltage Output Current | 5 mA sink or source |
| Short-Circuit Current | 15 mA typical, voltage output |
| Linearity Error | $\pm 1$ count ( $\pm 0.025 \%$ ) maximum |
| Gain Calibration Error | $\pm 8$ counts maximum, voltage output -8 to +11 counts maximum, current output |
| Offset Calibration Error | $\pm 2$ counts maximum, voltage output -5 to +9 counts maximum, current output |
| Conversion Time | $5 \mu \mathrm{~s}$ maximum, settling time 0.3 ms maximum, digital out to analog out |
| Digital Output Points Required | 16 point (Y) outputs, <br> 12 bits binary data, 4 channel select bits |
| Power Budget Requirement | 120 mA @ 5 VDC (from base) |
| External Power Supply | 24 VDC, 100 mA , class $2 \pm 10 \%$ (add 20 mA for each current loop used) |
| Accuracy vs. Temperature | $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum full scale $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum offset |
| Operating Temperature | 0 to $60^{\circ} \mathrm{C}$ ( 32 to $140^{\circ} \mathrm{F}$ ) |
| Storage Temperature | -20 to $70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Relative Humidity | 5 to 95\% (non-condensing) |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810C 514.2 |
| Shock | MIL STD 810C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

One count in the specification table is equal to one least significant bit of the analog data value ( 1 in 4096).

## F4-04DA 4-Channel Analog Output Module

## Wiring Diagram

NOTE 1: Shields should be connected to the OV terminal of the module or power supply.
NOTE 2: Unused voltage and current outputs should remain open (no connections).



## F4-04DA-1 4-Channel Analog Current Output

Output
Specifications

| Number of Channels | 4, single ended (one common) |
| :--- | :--- |
| Output Range | $4-20 \mathrm{~mA}$ |
| Resolution | 12 bit (1 in 4095) |
| Output Type | Outputs sink 4-20 mA from external supply |
| External Load Resistance | $0 \Omega$ minimum |
| Maximum Loop Supply | 30 VDC |
| Peak Output Voltage | 40 VDC (clamped, transient suppressed) |
| Maximum Load / Power Supply | $620 \Omega / 18 \mathrm{~V}, 910 \Omega / 24 \mathrm{~V}, 1200 \Omega / 30 \mathrm{~V}$ |
| Linearity Error (best fit) | $\pm 1$ count ( $\pm 0.025 \%$ ) maximum |
| Gain Calibration Error | $\pm 5$ counts maximum |
| Offset Calibration Error | $\pm 3$ counts maximum |
| Maximum Inaccuracy | $\pm 0.1 \%$ @ $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ |
| Conversion Time | $\pm 0.3 \%$ @ to $60^{\circ} \mathrm{C}\left(32\right.$ to140 ${ }^{\circ} \mathrm{F}$ ) |
|  | $100 \mu \mathrm{~s} \mathrm{maximum} settling time$, |
| 2.0 ms maximum, digital out to analog out |  |

General Module Specifications

| Digital Output Points Required | 16 point (Y) outputs, <br> 12 bits binary data and 4 active channel bits |
| :--- | :--- |
| Power Budget Requirement | $70 \mathrm{~mA} @ 5 \mathrm{VDC}$ (from base) |
| External Power Supply | $21.6-26.4 \mathrm{VDC}, 75 \mathrm{~mA}$, class 2 <br> (add 20 mA for each current loop used) |
| Accuracy vs. Temperature | $\pm 57$ ppm $/{ }^{\circ} \mathrm{C}$ full scale calibration range <br> (including maximum offset change, 2 counts) |
| Operating Temperature | 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |
| Storage Temperature | -20 to $70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Relative Humidity | 5 to $95 \%($ non-condensing) |
| Environmental Air | No corrosive gases permitted |
| Vibration | MIL STD 810 C 514.2 |
| Shock | MIL STD 810 C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

## F4-04DA-1 4-Channel Analog Current Output Module

## Wiring Diagram

NOTE 1: Shields should be connected to the OV terminal of the module terminal block.
NOTE 2: Unused current outputs should remain open (no connections).


## F4-04DA-2 4-Channel Analog Voltage Output

Output Specifications

| Number of Channels | 4, single ended (one common) |
| :---: | :---: |
| Output Ranges | 0-5, 0-10, $\pm 5, \pm 10$ VDC |
| Resolution | 12 bit (1 in 4095) |
| Load Impedance | $2 \mathrm{~K} \Omega$ minimum |
| Load Capacitance | 0.01 uF maximum |
| Voltage Output Current | 5.0 mA sink or source |
| Short-circuit Current | 15 mA typical |
| Linearity Error (end to end) and Relative Accuracy | $\pm 1$ count ( $\pm 0.025 \%$ ) maximum |
| Offset Calibration Error | $\pm 3$ counts maximum, unipolar <br> $\pm 4$ counts maximum, bipolar |
| Full Scale Calibration Error | $\pm 8$ counts maximum, (offset error included) |
| Maximum Inaccuracy | $\begin{aligned} & \pm 0.2 \% @ 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) \\ & \pm 0.4 \% @ 0 \text { to } 60^{\circ} \mathrm{C}\left(32 \text { to } 140^{\circ} \mathrm{F}\right) \end{aligned}$ |
| Conversion Time | $5 \mu \mathrm{~s}$ maximum, settling time 2.0 ms maximum, digital out to analog out |

## General <br> Module <br> Specifications

| Digital Output Points Required | 16 point (Y) outputs, <br> 12 bits binary data, 4 active channel bits or 2 active <br> channel bits and 1 sign bit for bipolar |
| :--- | :--- |
| Power Budget Requirement | 90 mA @ 5 VDC (from base) |
| External Power Supply | $21.6-26.4$ VDC, 90 mA, class 2 <br> (outputs fully loaded) |
| Accuracy vs. Temperature | $\pm 57$ ppm $/{ }^{\circ} \mathrm{C}$ full scale calibration change <br> (including maximum offset change, 2 counts) |
| Operating Temperature | 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |
| Storage Temperature | -20 to $70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Relative Humidity | 5 to $95 \%($ non-condensing $)$ |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810 C 514.2 |
| Shock | MIL STD 810 C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

## F4-04DA-2 4-Channel Analog Voltage Output Module

Wiring Diagram
NOTE 1: Shields should be connected to the OV terminal of the module or power supply. NOTE 2: Unused voltage outputs should remain open (no connections).


## F4-04DAS-1 4-Channel 4-20mA Isolated Analog Output

Output Specifications

| Number of Channels | 4, isolated current sourcing |
| :--- | :--- |
| Output Ranges | $4-20 \mathrm{~mA}$ current |
| Resolution | 16 bit (1 in 65536 ) |
| Output Type | Outputs source $4-20 \mathrm{~mA}$ from external supply |
| Isolation Voltage | $\pm 750 \mathrm{~V}$ continuous, channel to channel, channel to logic |
| Load Impedance | $0 \Omega-1375 \Omega$ |
| Loop Supply | $12-32 \mathrm{VDC}$ |
| Output Loop Compliance | Vin-2.5V |
| Max. Load/Power Supply | $375 \Omega / 12 \mathrm{~V}, 975 \Omega / 24 \mathrm{~V}, 1375 \Omega / 32 \mathrm{~V}$ |
| PLC Update Rate | 1 channel per scan min., <br> 4 per scan max. |
| Linearity Error (end to end) |  |
| and Relative Accuracy | $\pm 10$ count ( $\pm 0.015 \%$ ) maximum |
| Offset Calibration Error | $\pm 13$ counts ( $\pm 0.02 \%$ ) |
| Gain Calibration Error | $\pm 32$ counts maximum, (offset error included) |
| Maximum Inaccuracy | $\pm 0.07 \%$ @ $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ |
| $\pm 0.18 \%$ @ to $60^{\circ} \mathrm{C}$ (32 to140 ${ }^{\circ} \mathrm{F}$ ) |  |
| Conversion Time | 3 ms to $0.1 \%$ of full scale |

General Module Specifications

| Digital Output Points Required | 32 point (Y) outputs, <br> 16 bits binary data, 2 channel identification bits and 1 <br> output enable |
| :--- | :--- |
| Power Budget Requirement | 60 mA @ 5 VDC (from base) |
| External Power Supply | 50 mA per channel |
| Accuracy vs. Temperature | $\pm 50$ ppm $/{ }^{\circ} \mathrm{C}$ full scale calibration change <br> (including maximum offset change, 2 counts) |
| Operating Temperature | 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |
| Storage Temperature | -20 to $70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Relative Humidity | 5 to $95 \%$ (non-condensing) |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810 C 514.2 |
| Shock | MIL STD 810 C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

## F4-04DAS-1 4-Channel 4-20mA Isolated Analog Output Module

## Wiring Diagram



## F4-08DA-1 8-Channel Analog Current Output

Output Specifications

| Number of Channels | 8, single ended (one common) |
| :--- | :--- |
| Output Range | $4-20 \mathrm{~mA}$ current |
| Resolution | 12 bit (1 in 4095 ) |
| Output Type | Outputs sink $4-20 \mathrm{~mA}$ from external supply |
| Peak Output Voltage | 40 VDC (no transient voltage suppression) |
| External Load Resistance | $0-480 \Omega$ at $18 \mathrm{~V}, 220-740 \Omega$ at 24 V, <br> $1550-1760 \Omega$ at 48 V |
| Maximum Loop Supply | 48 VDC (with load resistance in proper range) |
| Crosstalk | $-70 \mathrm{~dB}, \pm 1$ count maximum |
| Linearity Error (end-to-end) and Rela- <br> tive Accuracy | $\pm 1$ count maximum |
| Full Scale Calibration Error <br> (offset error included) | $\pm 8$ counts maximum (20mA at $25^{\circ} \mathrm{C}$ ) |
| Offset Calibration Error | $\pm 3$ counts maximum ( 4 mA at $25^{\circ} \mathrm{C}$ ) |
| Maximum Inaccuracy | $\pm 0.2 \%$ at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ <br> $\pm 0.4 \%$ at 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $140^{\circ} \mathrm{F}$ ) |
| Conversion Time | 400 us maximum, for full scale change <br> 2.25 to 4.5 mS for digital output to analog out |

## General Module Specifications

| Digital Output Points Required | 16 point (Y) outputs, <br> 12 bits binary data, 3 bits channel select, <br> 1 bit output enable |
| :--- | :--- |
| Power Budget Requirement | 90 mA at 5 VDC (supplied by base power supply) |
| External Power Supply | $21.6-26.4 \mathrm{VDC}, 100 \mathrm{~mA}$, class 2 <br> (add 20 mA for each current loop used) |
| Accuracy vs. Temperature | $\pm 57$ ppm $/{ }^{\circ} \mathrm{C}$ full scale calibration range <br> (including maximum offset change, 2 counts) |
| Operating Temperature | 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |
| Storage Temperature | -20 to $70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Relative Humidity | 5 to $95 \% ~($ non-condensing) |
| Environmental Air | No corrosive gases permitted |
| Vibration | MIIL STD 810 C 514.2 |
| Shock | MIL STD 810 C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

## F4-08DA-1 8-Channel Analog Current Output Module

Wiring Diagram
NOTE 1: Shields should be connected to the OV of the User Power Supply at the module terminal block.
NOTE 2: Unused current outputs should remain open (no connections).


## F4-08DA-2 8-Channel Analog Current Output

Output Specifications

| Number of Channels | 8, single ended (one common) |
| :--- | :--- |
| Output Range | $0-5 \mathrm{VDC}, 0-10 \mathrm{VDC}$ |
| Resolution | 12 bit (1 in 4095) |
| Output Type | OVoltage Sourcing 10 mA maximum |
| External Load Resistance | $1 \mathrm{k} \Omega$ maximum $/ 10 \mathrm{k} \Omega$ minimum |
| Crosstalk | $-70 \mathrm{~dB}, \pm 1$ count maximum |
| Linearity Error (end-to-end) and <br> Relative Accuracy | $\pm 1$ count maximum (10VDC at $25^{\circ} \mathrm{C}$ ) |
| Full Scale Calibration Error <br> (offset error included) | $\pm 6$ counts maximum (10VDC at $25^{\circ} \mathrm{C}$ ) |
| Offset Calibration Error | $\pm 3$ counts maximum (0VDC at $\left.25^{\circ} \mathrm{C}\right)$ |
| Maximum Inaccuracy | $\pm 0.2 \%$ at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ <br> $\pm 0.4 \%$ at 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $140^{\circ} \mathrm{F}$ ) |
| Conversion Time | $400 ~ \mu \mathrm{~s}$ maximum, for full scale change <br> 4.5 to 9 mS for digital output to analog out |

## General Module Specifications

| Digital Output Points Required | 16 point (Y) outputs, <br> 12 bits binary data, 3 bits channel select, <br> 1 bit output enable |
| :--- | :--- |
| Power Budget Requirement | 80 mA at 5 VDC (supplied by base power supply) |
| External Power Supply | $21.6-26.4 \mathrm{VDC}, 150 \mathrm{~mA}$, class 2 <br> (add 20 mA for each current loop used) |
| Accuracy vs. Temperature | $\pm 57 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ full scale calibration range <br> (including maximum offset change, 2 counts) |
| Operating Temperature | 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $140^{\circ} \mathrm{F}$ ) |$|$| Storage Temperature | -20 to $70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| :--- | :--- |
| Relative Humidity | 5 to $95 \%$ (non-condensing) |
| Environmental Air | No corrosive gases permitted |
| Vibration | MIIL STD 810 C 514.2 |
| Shock | MIL STD 810 C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

## F4-08DA-2 8-Channel Analog Voltage Output Module

NOTE 1: Shields should be connected to the OV terminal of the User Power Supply at the module terminal block.


## F4-16DA-1 16-Channel Analog Current Output

Output Specifications

| Number of Channels | 16, single ended (one common) |
| :---: | :---: |
| Output Range | 4-20 mA current |
| Resolution | 12 bit (1 in 4095) |
| Output Type | Outputs sink 4-20 mA from external supply |
| Peak Output Voltage | 40 VDC (no transient voltage suppression) |
| External Load Resistance | $\begin{aligned} & 0-480 \Omega @ 18 \mathrm{~V}, 220-740 \Omega @ 24 \mathrm{~V}, \\ & 1550-1760 \Omega \text { @ } 48 \mathrm{~V} \end{aligned}$ |
| Maximum Loop Supply | 48 VDC (with load resistance in proper range) |
| Crosstalk | $-70 \mathrm{~dB}, \pm 1$ count maximum |
| Linearity Error (end-to-end) and Relative Accuracy | $\pm 1$ count maximum ( 20 mA at $25^{\circ} \mathrm{C}$ ) |
| Full Scale Calibration Error (offset error included) | $\pm 8$ counts maximum ( 20 mA at $25^{\circ} \mathrm{C}$ ) |
| Offset Calibration Error | $\pm 3$ counts maximum ( 4 mA at $25^{\circ} \mathrm{C}$ ) |
| Maximum Inaccuracy | $\begin{aligned} & \pm 0.2 \% @ 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right) \\ & \pm 0.4 \% @ 0 \text { to } 60^{\circ} \mathrm{C}\left(32 \text { to } 140^{\circ} \mathrm{F}\right) \end{aligned}$ |
| Conversion Time | $400 \mu \mathrm{~s}$ maximum, for full scale change 4.5 to 9 mS for digital output to analog out |

## General Module Specifications

| Digital Output Points Required | 32 point (Y) outputs, <br> 2 sets each of 12 bits binary data, 3 bits channel select, <br> 1 bit output enable |
| :--- | :--- |
| Power Budget Requirement | 90 mA @ 5 VDC (supplied by base) |
| External Power Supply | $21.6-26.4$ VDC, 100 mA, class 2 <br> (add 20 mA for each current loop used) |
| Accuracy vs. Temperature | $\pm 57$ ppm $/{ }^{\circ} \mathrm{C}$ full scale calibration range <br> (including maximum offset change, 2 counts) |
| Operating Temperature | 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |
| Storage Temperature | -20 to $70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Relative Humidity | 5 to $95 \% ~($ non-condensing $)$ |
| Environmental Air | No corrosive gases permitted |
| Vibration | MIL STD 810 C 514.2 |
| Shock | MIL STD 810 C 516.2 |
| Noise Immunity | NEMA ICS3-304 |
|  |  |

## F4-16DA-1 16-Channel Analog Current Output Module

Wiring Diagram
NOTE 1: Shields should be connected to the OV of the User Power Supply at the module terminal block.

NOTE 2: Unused current outputs should remain open (no connections).


## F4-16DA-2 16-Channel Analog Voltage Output

Output Specifications

| Number of Channels | 16, single ended (one common) |
| :--- | :--- |
| Output Range | $0-5 \mathrm{VDC}, 0-10 \mathrm{VDC}$ |
| Resolution | 12 bit (1 in 4095 ) |
| Output Type | Voltage Sourcing 10 mA maximum |
| External Load Resistance | $1 \mathrm{k} \Omega$ maximum $/ 10 \mathrm{k} \Omega$ minimum |
| Crosstalk | $-70 \mathrm{~dB}, \pm 1$ count maximum |
| Linearity Error (end-to-end) and <br> Relative Accuracy | $\pm 1$ count maximum (10VDC at $25^{\circ} \mathrm{C}$ ) |
| Full Scale Calibration Error <br> (offset error included) | $\pm 6$ counts maximum (10VDC at $25^{\circ} \mathrm{C}$ ) |
| Offset Calibration Error | $\pm 3$ counts maximum (0VDC at $\left.25^{\circ} \mathrm{C}\right)$ |
| Maximum Inaccuracy | $\pm 0.2 \%$ at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ <br> $\pm 0.4 \%$ at 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ <br> Conversion Time400 ss maximum, for full scale change <br> 4.5 to 9 mS for digital output to analog out |

## General Module Specifications

| Digital Output Points Required | 32 point (Y) outputs, <br> two sets each of 12 bits binary data, 3 bits channel se- <br> lect, 1 bit output enable |
| :--- | :--- |
| Power Budget Requirement | 80 mA at 5 VDC (supplied by base power supply) |
| External Power Supply | $21.6-26.4 \mathrm{VDC}, 150 \mathrm{~mA}$, class 2 <br> (add 20 mA for each current loop used) |
| Accuracy vs. Temperature | $\pm 57 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ full scale calibration range <br> (including maximum offset change, 2 counts) |
| Operating Temperature | 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $140^{\circ} \mathrm{F}$ ) |
| Storage Temperature | -20 to $70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Relative Humidity | 5 to $95 \%$ (non-condensing) |
| Environmental Air | No corrosive gases permitted |
| Vibration | MIIL STD 810 C 514.2 |
| Shock | MIL STD 810 C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

## F4-16DA-2 16-Channel Analog Voltage Output Module

NOTE 1: Shields should be connected to the OV terminal of the User Power Supply at the module terminal block.


## F4-08THM 8-Channel Thermocouple Input

Input Specifications

| Number of Channels | 8, differential inputs |  |
| :--- | :--- | ---: |
| Input Ranges | Type J: $-190 / 760^{\circ} \mathrm{C}$, | $-310 / 1400{ }^{\circ} \mathrm{F}$ |
|  | Type E: $-210 / 1000^{\circ} \mathrm{C}$, | $-346 / 1832^{\circ} \mathrm{F}$ |
|  | Type K: $-150 / 1372^{\circ} \mathrm{C}$, | $-238 / 2502^{\circ} \mathrm{F}$ |
|  | Type R: $65 / 1768^{\circ} \mathrm{C}$, | $149 / 3214^{\circ} \mathrm{F}$ |
|  | Type S: $65 / 1768^{\circ} \mathrm{C}$, | $149 / 3214^{\circ} \mathrm{F}$ |
|  | Type T: $-230 / 400^{\circ} \mathrm{C}$, | $-382 / 752^{\circ} \mathrm{F}$ |
|  | Type B: $529 / 1820^{\circ} \mathrm{C}$, | $984 / 3308^{\circ} \mathrm{F}$ |
|  | Type $\mathrm{N}:-70 / 1300^{\circ} \mathrm{C}$, | $-94 / 2372^{\circ} \mathrm{F}$ |
|  | Type C: $-65 / 2320^{\circ} \mathrm{C}$, | $-146 / 4208^{\circ} \mathrm{F}$ |
| Display Resolution | $\pm 0.1^{\circ} \mathrm{C}$ or $\pm 0.1^{\circ} \mathrm{F}$ |  |
| Input Impedance | $1 \mathrm{M} \Omega$ |  |
| Absolute Maximum Ratings | Fault-protected input, $\pm 50 \mathrm{VDC}$ |  |
| Cold Junction Compensation | Automatic |  |
| Conversion Time | $100 \mathrm{~ms} \mathrm{per} \mathrm{channel} minimum$, |  |
| Linearity Error | $\pm .05^{\circ} \mathrm{C}$ maximum, $\pm .01^{\circ} \mathrm{C}$ typical |  |
| Full Scale Calibration Error | $\pm 13$ counts typical, $\pm 33$ counts max. |  |
| Maximum Inaccuracy | $\pm .02 \%$ @ $25^{\circ} \mathrm{C}$ |  |

## General Specifications

| PLC Update Rate | 8 channel per scan max. |
| :--- | :--- |
| Digital Input Points Required | $16(\mathrm{X})$ input points, including, 2 channel ID bits, <br> 4 diagnostic bit |
| Power Budget Requirement | 110 mA @ 5 VDC (from base) |
| External Power Supply | 60 mA maximum, 18 to 26.4 VDC |
| Operating Temperature | $0^{\circ}$ to $60^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |
| Storage Temperature | $-20^{\circ}$ to $70^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Accuracy vs. Temperature | $\pm 57$ ppm $/{ }^{\circ} \mathrm{C}$ maximum full scale |
| Relative Humidity | 5 to $95 \%($ non-condensing $)$ |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810 C 514.2 |
| Shock | MIL STD 810 C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

## F4-08THM 8-Channel Thermocouple Input Module

Note 1: Terminate shields at the respective signal
source.
Note 2: Leave unused channels open (no connection).


## F4-08THM-n 8-Channel Thermocouple Input

Input Specifications

| Number of Channels | 8, differential inputs |
| :---: | :---: |
| Input Ranges | Type E: $-270 / 1000^{\circ} \mathrm{C}$, $-450 / 1832{ }^{\circ} \mathrm{F}$ <br> Type J: $-210 / 760^{\circ} \mathrm{C}$, $-350 / 1390^{\circ} \mathrm{F}$ <br> Type K: $-270 / 1370^{\circ} \mathrm{C}$, $-450 / 2500^{\circ} \mathrm{F}$ <br> Type R: $0 / 1768{ }^{\circ} \mathrm{C}$, $32 / 3214^{\circ} \mathrm{F}$ <br> Type S: $0 / 1768{ }^{\circ} \mathrm{C}$, $32 / 3214^{\circ} \mathrm{F}$ <br> Type T: $-270 / 400^{\circ} \mathrm{C}$, $-450 / 752^{\circ} \mathrm{F}$ <br> Type C: $60 / 2320^{\circ} \mathrm{C}$, $149 / 4208^{\circ} \mathrm{F}$ <br> Type B: $529 / 1820^{\circ} \mathrm{C}$, $984 / 3594^{\circ} \mathrm{F}$ <br> Type P: $-99 / 1395^{\circ} \mathrm{C}$, $-146 / 2543^{\circ} \mathrm{F}$ <br> $-1:$ $0-50 \mathrm{mV}$ <br> $-2:$ $0-100 \mathrm{mV}$ <br> $-3:$ $0-25 \mathrm{mV}$ |
| Resolution | 12 bit (1 in 4096) |
| Input Impedance | 27K ${ }^{\text {DC }}$ |
| Absolute Maximum Ratings | Fault-protected input, 130 Vrms or 100 VDC |
| Cold Junction Compensation | Automatic |
| Conversion Time | 15 ms per channel, minimum 1 channel per CPU scan |
| Converter Type | Successive approximation |
| Linearity Error | $\pm 1$ count ( $0.03 \%$ of full scale) maximum |
| Full Scale Calibration Error | 0.35\% of full scale |
| Maximum Inaccuracy* | $\pm 1^{\circ} \mathrm{C}$ type $\mathrm{J}, \mathrm{K}, \mathrm{E}, \mathrm{T}$ thermocouples <br> $\pm 3^{\circ} \mathrm{C}$ type $\mathrm{R}, \mathrm{S}, \mathrm{B}, \mathrm{C}, \mathrm{P}$ thermocouples |

* Maximum Inaccuracy is guaranteed for temperatures above $-220^{\circ} \mathrm{C}$ for types E , $\mathrm{T}, \mathrm{J}$, and K , and above $+100^{\circ} \mathrm{C}$ for types R and S .


## General Specifications

| PLC Update Rate | 8 channel per scan max. |
| :--- | :--- |
| Digital Input Points Required | $16(\mathrm{X})$ input points, including 12 binary data bits, 3 chan- <br> nel ID bits, 1 sign bit |
| Power Budget Requirement | 120 mA @ 5 VDC (from base) |
| External Power Supply | $24 \mathrm{VDC} \pm 10 \%, 50 \mathrm{~mA}$ current |
| Operating Temperature | $0^{\circ}$ to $60^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |
| Storage Temperature | $-20^{\circ}$ to $70^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Accuracy vs. Temperature | $\pm 57 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum full scale |
| Relative Humidity | 5 to $95 \%$ (non-condensing) |
| Environmental air | No corrosive gases permitted |
| Vibration | MIL STD 810 C 514.2 |
| Shock | MIL STD 810 C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

## F4-08THM-n 8-Channel Thermocouple Input Module

Note 1: Terminate shields at the respective signal source.
Note 2: Leave unused channels open (no connection).
Internal Module Wiring



## F4-08RTD 8-Channel RTD Input

## Input Specifications

| Number of Channels | 8 differential inputs |
| :---: | :---: |
| Input Ranges | Pt100 $-200^{\circ} \mathrm{C} / 850^{\circ} \mathrm{C}$ $\left(-328^{\circ} \mathrm{F} / 1562^{\circ} \mathrm{F}\right)$ <br> Pt 1000 $-200^{\circ} \mathrm{C} / 595^{\circ} \mathrm{C}$ $\left(-328^{\circ} \mathrm{F} / 1103^{\circ} \mathrm{F}\right)$ <br> jPt100 $-38^{\circ} \mathrm{C} / 450^{\circ} \mathrm{C}$ $\left(-36^{\circ} \mathrm{F} / 842^{\circ} \mathrm{F}\right)$ <br> $10 \Omega \mathrm{Cu}$. $-200^{\circ} \mathrm{C} / 260^{\circ} \mathrm{C}$ $\left(-328^{\circ} \mathrm{F} / 500^{\circ} \mathrm{F}\right)$ <br> $25 \Omega \mathrm{Cu}$. $-200^{\circ} \mathrm{C} / 260^{\circ} \mathrm{C}$ $\left(-328^{\circ} \mathrm{F} / 500^{\circ} \mathrm{F}\right)$ |
| Display Resolution | $\pm 0.01{ }^{\circ} \mathrm{C}, \pm 0.01^{\circ} \mathrm{F}( \pm 3276.7)$ |
| Resolution | 15-bit (1 in 32768) |
| Absolute Maximum Ratings | Fault-protected input, $\pm 22$ VDC |
| Converter Type | Charge balancing, 24-bit |
| Sampling Rate | 160 msec per channel |
| Temperature Drift | $\pm 5 \mathrm{ppm}$ per ${ }^{\circ} \mathrm{C}$ (maximum) |
| Common Mode Range | 0-5 VDC |
| Linearity Error | $\pm .05^{\circ} \mathrm{C}$ maximum, $\pm .01^{\circ} \mathrm{C}$ typical |
| Full Scale Calibration | $\pm 1^{\circ} \mathrm{C}$ |

## General

 Specifications| PLC Update Rate | 8 Channels/Scan max. DL440/DL450 CPUs <br> 1 Channel/Scan max. DL430 CPU |
| :--- | :--- |
| Digital Input Points Required | $32(X)$ input points, 16 binary data bits, <br> 3 channel ID bits, 8 fault bits |
| Power Budget Requirement | 80 mA @ 5 VDC (from base) |
| Operating Temperature | $0^{\circ}$ to $60^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ |
| Storage Temperature | $-20^{\circ}$ to $70^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$ |
| Relative Humidity | 5 to $95 \%$ (non-condensing) |
| Environmental Air | No corrosive gases permitted |
| Vibration | MIL STD 810 C 514.2 |
| Shock | MIL STD 810C 516.2 |
| Noise Immunity | NEMA ICS3-304 |

## F4-08RTD 8-Channel RTD Input Module



Notes:

1. The three wires connecting the RTD to the module must be the same type and length. Do not use the shield or drain wire for the third connection.
2. If a RTD sensor has four wires, the extra plus (+) sense wire should be left unconnected as shown.
