Modbus RTU Slave

T1K-MODBUS
 $\$ 295.00$

The Terminator I/O Modbus network interface module allows you to connect I/O as a slave station on a Modbus RTU network. The T1K-MODBUS can communicate with any Modbus RTU network master using high-level Modbus commands.

DirectLogic Modbus

communications

Some of our DirectLogic PLCs can be used as Modbus masters, directly through a communication port on the CPU. (Consult the PLC section of this catalog for more information.)

Network configuration options

You can configure a simple point-to-point network or create a multidrop network using the RS-232, RS-422/485 HD-15 Modbus port. The T1K-MODBUS has two rotary switches that can be set to designate the module's slave address. Set the rotary switches to give each slave a unique address in a range from 1-F7 hex (1-247 decimal). The T1K-MODBUS also has an auxiliary RJ12 RS-232 serial port that can be used to configure the Modbus port with the T1K-MODBUS Setup Tool.

Asynchronous communications

In most applications, the Modbus master polls the slaves individually (T1K-MODBUS) to read/write each slave's I/O. The communication between the Modbus master and slave will often be asynchronous to the master CPU scan. For this reason, applications should be limited to those that do not require the I/O points to update every master CPU scan.

Specifications			
Modbus Port	Cable Lengths and Baud Rates	RS-232	15m (50ft.): 300, 600, 1200, 2400, 4800, 9600; 19.2 K, 38.4 K baud
		RS-422/485	1000 m (3300ft): $300,600,1200,2400,4800,9600 ; 19.2$ K, 38.4 K baud
Max. I/O Points per Controller			Discrete: inputs: 1024, outputs: 1024; Analog: inputs: 64 channels, outputs: 64 channels
Recommended Cable			Belden 9729 or equivalent (RS-422)
Terminal Type			15-pin female high-density (VGA style) D-sub connector
RJ12 Serial Port			RS-232; 9600/19200 baud; supports K-Sequence and ASCII (Use to configure Modbus port using T1K-MODBUS setup tool)
Base Power Requirement			250mA @ 5VDC

Dimensions and Installation

It is important to understand the installation requirements for your Terminator I/O system. This will ensure that the Terminator I/O products work within their environmental and electrical limits.

Plan for safety

This catalog should never be used as a replacement for the technical data sheet that comes with the products or the T1K-INST-M Installation and I/O Manual (available online at www.automationdirect.com.) The technical data sheet contains information that must be followed. The system installation should comply with all appropriate electrical codes and standards.

Unit dimensions and mounting orientation

Use the following diagrams to decide if the Terminator I/O system can be installed in your application. Terminator I/O units should be mounted horizontally. To ensure proper airflow for cooling purposes, units should not be mounted upside-down. It is important to check the Terminator I/O dimensions against the conditions required for your application. For example, it is recommended to leave 2" depth for ease of access and cable clearance. However, your distance may be greater or less. Also, check the installation guidelines for the recommended cabinet clearances.

Terminator I/O Environmental Specifications	
Ambient Operating Temperature	$32^{\circ} \mathrm{F}$ to $131^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
Storage Temperature	$-4^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Ambient Humidity	5% to 95% (Non-condensing)
Atmosphere	No corrosive gases. The level of environmental pollution $=2$ (UL 840)
Vibration Resistance	MIL STD 810C, Method 514.2
Shock Resistance	MIL STD 810C, Method 516.2
Voltage Withstand (Dielectric)	$1500 \mathrm{VAC}, 1$ minute
Insulation Resistance	500 VDC, 10 Mq
Noise Immunity	NEMA ICS3-304 Impulse noise $1 \mu \mathrm{~s}, 1000 \mathrm{~V}$ FCC class A RFI (144MHz, 430MHz 10W, 10cm)
Agency Approvals	UL, CE, FCC class A, NEC Class 1 Division 2

I/O Module Installation

I/O module installation

Terminator I/O modules feature separate terminal bases for easy installation.
To install I/O modules:

1. Slide the module into its terminal base (until it clicks into position)
2. Hook upper DIN rail tabs over the top of DIN rail, and press the assembly firmly onto the DIN rail.
3. Slide the module along the DIN rail until it engages with the adjacent module.

DN-ASB1 angled mounting bracket

Great for mounting in upper locations

Great for mounting in lower locations

Optional angled support bracket raises and tilts the mounting rail for easier access and wiring. Use with 35 mm DIN rail. See the Connection Systems in this catalog for details.

Removing I/O modules is a snap

Grip the locking handle, as shown, and pull gently to eject the I/O module from its base. The module will slide out for easy replacement. This procedure does not apply to network interface modules or power supplies, which have integral bases.

Hot-swappable I/O modules
You can remove I/O modules under power, but exercise caution while doing so. Do not touch the terminals with your hands or any conductive material. Always remove power when possible.

Power Supplies and Power Requirements

Power supplies

The Terminator I/O product line offers two power supply options: AC or DC. The power supplies are always positioned to the left of the modules to which they supply power. Consult the system configuration examples and the power budgeting example for more information on positioning power supplies.

Power supply specifications

Power Supply Specifications		$\begin{aligned} & \frac{\text { T1K- }}{\text { O1AC }} \\ & \$ 159.00 \end{aligned}$	$\begin{aligned} & \frac{\text { T1K- }}{\text { O1DC }} \\ & \$ 167.00 \end{aligned}$
Input Voltage Range		$\begin{gathered} 110 / 220 \\ \text { VAC } \end{gathered}$	12/24 VDC
Input Frequency		$50 / 60 \mathrm{~Hz}$	N/A
Maximum Power		50VA	30W
Max. Inrush Current		20A	10A
Insulation Resistance		> 10Mq @ 500 VDC	
Voltage Withstand		1 min. @ 1500VAC between primary, secondary and field ground	
$\begin{aligned} & \text { 5VDC } \\ & \text { PWR } \end{aligned}$	Voltage	5.25 VDC	5.25 VDC
	Current Rating	2000 mA max (see current option note below)	2000 mA \max
	Ripple	5\% max.	5\% max.
$\begin{array}{\|l\|} \hline \text { 24VDC } \\ \text { PWR } \end{array}$	Voltage	24VDC	N/A
	Current Rating	300 mA max. (see current option note below)	N/A
	Ripple	10\% max.	N/A
Fuse	1 (primary), not replaceable		
Replacement Terminal Block (Phoenix Contact)		MVSTBW 2.5/4-ST- 5.08 BK	$\begin{aligned} & \text { MVSTBW } \\ & 2.5 / 6-\mathrm{ST}- \\ & 5.08 \mathrm{BK} \\ & \hline \end{aligned}$
Note: $500 \mathrm{~mA} @ 24 \mathrm{VDC}$ can be achieved by lowering the 5 VDC from 2000 mA to 1500 mA .			

Power requirements

Module	5VDC	24VDC
Interface Modules		
T1H-	300	0
EBC100	30	
T1K-	250	45
DEVNETS	20	
T1K-	300	0
MODBUS	300	
DC Input Modules		
T1K-08ND3 35 0 T1K-16ND3 70 0 AC Input Modules T1K-08NA-1 35 0 T1K-16NA-1 70 0 		

Module	5VDC	24VDC
DC Output Modules		
T1H-08TDS	200	0
T1K-08TD1	100	200*
T1K-16TD1	200	400*
T1K-	200	0
T1K-	200	0
AC Output Modules		
T1K-08TA	250	0
T1K-16TA	450	0
T1K-08TAS	300	0
Relay Output Modules		
T1K-08TR	350	0
T1K-16TR	700	0
T1K-08TRS	400	0
Specialty Modules		
T1H-CTRIO	400	0
* Use either internal or external source for 24VDC		

Module	5VDC	24VDC
Analog Input Modules		
T1F-08AD-1	75	$50 *$
T1F-08AD-2	75	50*
T1F-16AD-1	75	50*
T1F-16AD-2	75	50 *
T1F-16RTD	150	0
$\begin{aligned} & \text { T1F- } \\ & \hline 16 T M S T \end{aligned}$	150	0
T1F-14THM	60	70*
Analog Output Modules		
T1F-08DA-1	75	150*
T1F-08DA-2	75	150*
T1F-16DA-1	75	150*
T1F-16DA-2	75	150*
Combination Analog Modules		
$\begin{aligned} & \text { T1F- } \\ & \hline 8 A D 4 D A-1 \end{aligned}$	75	60*
$\frac{T 1 F-}{8 A D 4 D A-2}$	75	70*
* Use either internal or external source for 24VDC		

Calculating the power budget

To calculate the power budget, read the available power (current rating) from the Power Supply Specifications table and subtract the power consumed by each module to the right of the power supply. Do not include modules to the right of an additional power supply.

Adding additional

power supplies

Power Budget Example		
Module	5VDC	24 VDC
T1K-01AC	+2000 mA	+300 mA
T1H-EBC100	-300 mA	-0 mA
T1K-16ND3	-70 mA	-0 mA
T1K-16TD2	-200 mA	-0 mA
T1F-08AD-1	-75 mA	-50 mA
Remaining	+1355 mA	+250 mA

This power supply powers the network interface module and the next two I/O modules

This power supply powers these three I/O modules

Expansion I/O Configurations

Expansion cables

T1K-10CBL $\quad \$ 104.00$
 T1K-10CBL-1* ${ }^{*} 138.00$

Right side to left side expansion cable The T1K-10CBL-1) connects the right side of an I/O base to the left side of the next I/O base. A maximum of two T1K-10CBL(-1) cables can be used per expansion system.

*Note: The (-1) versions of the expansion cables pass 24VDC through on an isolated wire. (All cables pass the 5VDC base power.) Any local expansion DC input module configured for "internal power" (current sourcing) must either have a power supply preceding it on the same base or, have a (-1) version cable pass 24VDC from a power supply on the preceding base.

Using two T1K-10CBL expansion cables

In the system below, power supplies can be used anywhere.

Field Device Wiring and Power Options

Terminal base specifications

Terminator I/O terminal bases are available in screw clamp and spring clamp versions for both half-size and full-size modules. Hot stamp silk screen labeling is used for numbering I/O points, commons, and all power terminals.

Terminal Base Specifications		
Terminal Type	Screw type	Spring clamp
Recommended Torque	$\begin{aligned} & 1.77-3.54 \mathrm{lb} \cdot \mathrm{in} \\ & (0.2-0.4 \mathrm{~N} \cdot \mathrm{~m}) \end{aligned}$	N/A
Wire Gauge	Solid: 25-12 AWG Stranded: 26-12 AWG	Solid: 25-14 AWG Stranded: 26-14 AWG

Field device wiring options

Power your DC input devices from the integrated 24VDC power supply bus. T1K-08ND3 and T1K-16ND3 DC input modules include jumpers for selecting the internal 24 VDC power supply available for 2 - and 3 -wire field devices. Clearly labeled triple stack terminals make it easy to wire 2 - and 3-wire devices ensuring clean wiring with only one wire per
termination.
External user supplied 24VDC power, or auxiliary 24 VDC terminals from T1K$\underline{01 \mathrm{AC}}$, can be easily applied directly to one end of the terminal rows and jumpered across each base in the system.
This is a convenient solution for powering analog I/O and discrete DC output devices whose modules do not have direct access to the internal bussed 24VDC. If current consumption increases, simply add additional T1K-01AC power supplies into the system.

Hot-swap feature

The hot-swap feature allows Terminator I/O modules to be replaced while system power is on. Be careful not to touch the terminals with your hands or other conductive material to avoid the risk of personal injury or equipment damage. Always remove power if it is equally convenient to do so.
Note: Before hot-swapping analog or

DC output modules in a Terminator I/O system, make sure that each of the analog and DC output module's 24VDC and 0 VDC base terminals are wired directly to the external power supply individually. If the external 24 VDC and 0 VDC is jumpered from base to base in a daisy chain fashion, and an analog or DC output
module is removed from its base, the risk of disconnecting the external 24VDC and 0 VDC to the subsequent I/O modules exists.

