
Standard rLL
InStructIonS

ChapterChapterChapter

5
In This Chapter...

Introduction ... 5-2

Using Boolean Instructions ... 5-4

Boolean Instructions ... 5-9

Comparative Boolean .. 5-18

Immediate Instructions ... 5-24

Timer, Counter and Shift Register Instructions .. 5-29

Accumulator/Stack Load and Output Data Instructions .. 5-42

Logical Instructions (Accumulator) ... 5-55

Math Instructions .. 5-63

Bit Operation Instructions ... 5-70

Number Conversion Instructions (Accumulator) .. 5-74

Table Instructions .. 5-77

CPU Control Instructions ... 5-80

Program Control Instructions ... 5-81

Interrupt Instructions .. 5-83

Message Instructions ... 5-85

DL105 User Manual, 3rd Ed. Rev. G5-2

Chapter 5: Standard RLL Instructions

Introduction
The DL105 Micro PLCs offer a wide variety of instructions to perform many different
types of operations. This chapter shows you how to use each standard Relay Ladder Logic
(RLL) instruction. In addition to these instructions, you may also need to refer to the Drum
instruction in Chapter 6, or the Stage programming instructions in Chapter 7.

There are two ways to quickly find the instruction you need:
• If you know the instruction category (Boolean, Comparative Boolean, etc), use the title at

the top of the manual page that refers to the instructions in that category.
 • OR if you know the individual instruction name, use the following table to find the page

reference for the instruction.

Instruction Page
ACON ASCII Constant 5-87
ADD Add BCD 5-63
ADDD Add Double BCD 5-64

AND And for contacts or boxes 5-11, 5-23,
5-55

ANDSTR And Store 5-12
ANDD And Double 5-56
ANDE And if Equal 5-20
ANDI And Immediate 5-26
ANDN And Not 5-23
ANDNE And if Not Equal 5-20
ANDNI And Not Immediate 5-26
BCD Binary Coded Decimal 5-75
BIN Binary 5-74
CMP Compare 5-61
CMPD Compare Double 5-62
CNT Counter 5-35
DECB Decrement Binary 5-69
DECO Decode 5-73
DISI Disable Interrupts 5-83
DIV Divide 5-68
DLBL Data Label 5-87
EDRUM Event Drum 6-2, 6-12
ENCO Encode 5-72
END End 5-4, 5-80
ENI Enable Interrupts 5-83
FAULT Fault 5-85
INCB Increment Binary 5-69
INT Interrupt 5-83
INV Invert 5-76
IRT Interrupt Return 5-83
IRTC Interrupt Return Conditional 5-83
ISG Initial Stage 7-20
JMP Jump 7-20

Instruction Page
LD Load 5-47
LDA Load Address 5-50
LDD Load Double 5-48
LDF Load Formatted 5-49
LDLBL Load Label 5-78
MLR Master Line Reset 5-81
MLS Master Line Set 5-81
MOV Move 5-77
MOVMC Move Memory Cartridge 5-78
MUL Multiply 5-67
NCON Numeric Constant 5-87
NOP No Operation 5-80

OR Or 5-10, 5-22,
5-57

OROUT Or Out 5-14
OROUTI Or Out Immediate 5-27
ORSTR Or Store 5-12
ORD Or Double 5-58
ORE Or if Equal 5-19
ORI Or Immediate 5-25
ORN Or Not 5-10, 5-22
ORNE Or if Not Equal 5-19
ORNI Or Not Immediate 5-25
OUT Out 5-14, 5-51
OUTD Out Double 5-52
OUTF Out Formatted 5-51
OUTI Out Immediate 5-27
PAUSE Pause 5-17
PD Positive Differential 5-15
POP Pop 5-54
RST Reset 5-16
RSTI Reset Immediate 5-28
SET Set 5-16
SETI Set Immediate 5-28
SG Stage 7-19
SGCNT Stage Counter 5-37

Continued on next page.

DL105 User Manual, 3rd Ed. Rev. G 5-3

Chapter 5: Standard RLL Instructions

Instruction Page
SHFL Shift Left 5-70
SHFR Shift Right 5-71
SR Shift Register 5-41
STOP Stop 5-80
STR Store 5-11
STRE Store if Equal 5-18
STRI Store Immediate 5-24
STRN Store Not 5-9, 5-21
STRNE Store if Not Equal 5-18
STRNI Store Not Immediate 5-24
SUB Subtract 5-65
SUBBD Subtract Binary Double 5-66
TMR Timer 5-30
TMRF Fast Timer 5-30
TMRA Accumulating Timer 5-32
TMRAF Fast Accumulating Timer 5-32
UDC Up Down Counter 5-39
XOR Exclusive Or 5-59
XORD Exclusive Or Double 5-60

DL105 User Manual, 3rd Ed. Rev. G5-4

Chapter 5: Standard RLL Instructions

Using Boolean Instructions
Do you ever wonder why so many PLC manufacturers always quote the scan time for a
1K boolean program? Simple, most programs utilize many boolean instructions. These are
typically very simple instructions designed to join input and output contacts in various series
and parallel combinations. Our DirectSOFT programming package is a similar program. It
uses graphic symbols to develop a program; therefore, you don’t necessarily have to know the
instruction mnemonics in order to develop your program.

Many of the instructions in this chapter are not program instructions used in DirectSOFT,
but are implied. In other words, they are not actually keyboard commands but they can be
seen in a Mnemonic View of the program once the DirectSOFT program has been developed
and accepted (compiled). Each instruction listed in this chapter will have a small chart to
indicate how the instruction is used with DirectSOFT and the HPP.

The following paragraphs describe how these instructions are used to build simple ladder
programs.

END Statement
All DL105 programs require an END statement as the last instruction. This tells the CPU that
this is the end of the program. Normally, any instructions placed after the END statement
will not be executed. There are exceptions to this such as interrupt routines, etc. This chapter
discusses the instruction set in detail.

Simple Rungs
You use a contact to start rungs that contain both contacts and coils. The boolean instruction
that does this is called a Store or, STR instruction. The output point is represented by the
Output or, OUT instruction. The following example shows how to enter a single contact
and a single output coil.

OUT
Y0X0

END

DirectSOFT Example Handheld Mnemonics

STR X0
OUT Y0
END

OUT
Y0X0

END

All programs must have
an END statement

DS Implied
HPP Used

DirectSOFT Example

DL105 User Manual, 3rd Ed. Rev. G 5-5

Chapter 5: Standard RLL Instructions

Normally Closed Contact
Normally closed contacts are also very common. This is accomplished with the Store Not, or
STRN instruction. The following example shows a simple rung with a normally closed contact.

Contacts in Series
Use the AND instruction to join two or more contacts in series. The following example shows
two contacts in series and a single output coil. The instructions used would be STR X0, AND
X1, followed by OUT Y0.

Mid-line Outputs
Sometimes it is necessary to use mid-line outputs to get additional outputs that are conditional
on other contacts. The following example shows how you can use the AND instruction to
continue a rung with more conditional outputs.

OUT
Y0X0

END

X1

DirectSOFT Example Handheld Mnemonics

STR X0
AND X1
OUT Y0
END

OUT
Y0X0

END

X1

DirectSOFT Example Handheld Mnemonics

STR X0
AND X1
OUT Y0
AND X2
OUT Y1
AND X3
OUT Y2
END

X2
OUT
Y1

X3
OUT
Y2

OUT
Y0X0

END

DirectSOFT Example Handheld Mnemonics

STRN X0
OUT Y0
END

DL105 User Manual, 3rd Ed. Rev. G5-6

Chapter 5: Standard RLL Instructions

Parallel Elements
You may also have to join contacts in parallel. The OR instruction allows you to do this. The
following example shows two contacts in parallel and a single output coil. The instructions
would be STR X0, OR X1, followed by OUT Y0.

Joining Series Branches in Parallel
Quite often it is necessary to join several groups of series elements in parallel. The Or Store
(ORSTR) instruction allows this operation. The following example shows a simple network
consisting of series elements joined in parallel.

Joining Parallel Branches in Series
You can also join one or more parallel branches in series. The And Store (ANDSTR) instruction
allows this operation. The following example shows a simple network with contact branches
in series with parallel contacts.

Combination Networks
You can combine the various types of
series and parallel branches to solve
most any application problem. The
following example shows a simple
combination network.

OUT
Y0X0

END

X1

DirectSOFT Example Handheld Mnemonics

STR X0
OR X1
OUT Y0
END

OUT
Y0X0

END

X2

X1

X3

DirectSOFT Example Handheld Mnemonics

STR X0
AND X1
STR X2
AND X3
ORSTR
OUT Y0
END

OUT
Y0X0

END

X1

X2

DirectSOFT Example Handheld Mnemonics

STR X0
STR X1
OR X2
ANDSTR
OUT Y0
END

OUT

Y0X0

END

X2

X3X1 X4

X5

X6

DL105 User Manual, 3rd Ed. Rev. G 5-7

Chapter 5: Standard RLL Instructions

Comparative Boolean
The DL105 Micro PLCs provide Comparative Boolean instructions that allow you to quickly
and easily compare two numbers. The Comparative Boolean provides evaluation of two 4-digit
values using boolean contacts. The valid evaluations are: equal to, not equal to, equal to or
greater than, and less than.

In the example ,when the BCD value in V-memory
location V1400 is equal to the constant value 1234,
Y3 will energize.

Boolean Stack
There are limits to how many elements you can include in a rung. This is because the DL105
CPUs use an 8-level boolean stack to evaluate the various logic elements. The boolean stack is a
temporary storage area that solves the logic for the rung. Each time you enter a STR instruction,
the instruction is placed on the top of the boolean stack. Any other STR instructions on the
boolean stack are pushed down a level. The ANDSTR, and ORSTR instructions combine
levels of the boolean stack when they are encountered. Since the boolean stack is only eight
levels, an error will occur if the CPU encounters a rung that uses more than the eight levels of
the boolean stack.

The following example shows how the boolean stack is used to solve boolean logic.

X1 or (X2 AND X3)

STR X0 STR X1 STR X2
1 STR X0

2

3

4

1 STR X1

2 STR X0

3

4

1

2

3

4

AND X3
1

2

3

4

ORSTR
1

2 STR X0

3

OUT
Y0X0 X1

X2 X3

X4

X5

STR

OR

AND

ORSTR

ANDSTR

Output
STR

STR

AND

X4 AND {X1 or (X2 AND X3)}

AND X4
1
2 STR X0
3

NOT X5 OR X4 AND {X1 OR (X2 AND X3)}

ORNOT X5
1

2

3

ANDSTR
XO AND (NOT X5 or X4) AND {X1 or (X2 AND X3)}1

2

3

STR X0

STR X2

STR X1

STR X0

STR X2

STR X1

STR X0

Y3
OUT

V1400 K1234

DL105 User Manual, 3rd Ed. Rev. G5-8

Chapter 5: Standard RLL Instructions

Immediate Boolean
The DL105 Micro PLCs can usually complete an operation cycle in a matter of milliseconds.
However, in some applications you may not be able to wait a few milliseconds until the next
I/O update occurs. The DL105 PLCs offer immediate input and outputs which are special
boolean instructions that allow reading directly from inputs and writing directly to outputs
during the program execution portion of the CPU cycle. You may recall that this is normally
done during the input or output update portion of the CPU cycle. The immediate instructions
take longer to execute because the program execution is interrupted while the CPU reads or
writes the I/O point. This function is not normally done until the read inputs or the write
outputs portion of the CPU cycle.

NOTE: Even though the immediate input instruction reads the most current status from the input point, it only
uses the results to solve that one instruction. It does not use the new status to update the image register.
Therefore, any regular instructions that follow will still use the image register values. Any immediate
instructions that follow will access the I/O again to update the status. The immediate output instruction will
write the status to the I/O and update the image register.

X0OFF

X1OFF

CPU Scan

Read Inputs

Diagnostics

Input Image Register

The CPU reads the inputs from the local
base and stores the status in an input
image register.

X0 Y0

X0X1X2...X11
OFFOFFON...OFF

Solve the Application Program

Read Inputs from Specialty I/O

Write Outputs

Write Outputs to Specialty I/O

X0ON

X1OFF

Immediate instruction does not use the
input image register, but instead reads
the status from themodule immediately. I/O Point X0 ChangesI

DL105 User Manual, 3rd Ed. Rev. G 5-9

Chapter 5: Standard RLL Instructions

Boolean Instructions
Store (STR)

The Store instruction begins a new rung or an additional branch in a
rung with a normally open contact. Status of the contact will be the
same state as the associated image register point or memory location.

Store Not (STRN)
The Store Not instruction begins a new rung or an additional branch
in a rung with a normally closed contact. Status of the contact will
be opposite the state of the associated image register point or memory
location.

In the following Store example, when input X1 is on output Y2 will energize.

In the following Store Not example, when input X1 is off output Y2 will energize.

Aaaa

Aaaa

DS Used
HPP Used

Operand Data Type Range
DL-130

 A aaa
Inputs X 0–11
Outputs Y 0–7
Control Relays C 0–377
Stage S 0–377
Timer T 0–77
Counter CT 0–77
Special Relay SP 0–117, 540–577

STRN
SP

1
B ENT

OUT
GX

2
C ENT

Y2

OUT

X1
Handheld Programmer KeystrokesDirectSOFT

STR
$

1
B ENT

OUT
GX

2
C ENT

Handheld Programmer KeystrokesDirectSOFT

Y2

OUT

X1

DS Used
HPP Used

DL105 User Manual, 3rd Ed. Rev. G5-10

Chapter 5: Standard RLL Instructions

Or (OR)
The Or instruction logically ors a normally open contact in
parallel with another contact in a rung. The status of the contact
will be the same state as the associated image register point or
memory location.

Or Not (ORN)
The Or Not instruction logically ors a normally closed contact in
parallel with another contact in a rung. The status of the contact
will be opposite the state of the associated image register point or
memory location.

In the following Or example, when input X1 or X2 is on, output Y5 will energize.

In the following Or Not example, when input X1 is on or X2 is off, output Y5 will energize.

Aaaa

Aaaa

Operand Data Type Range
DL-130

 A aaa
Inputs X 0-11
Outputs Y 0-7
Control Relays C 0–377
Stage S 0–377
Timer T 0–77
Counter CT 0–77
Special Relay SP 0-117, 540-577

STR
$

1
B ENT

OR
Q

2
C ENT

OUT
GX

5
F ENT

Y5

OUT

X1

X2

Handheld Programmer KeystrokesDirectSOFT

STR
$

1
B ENT

2
C ENT

OUT
GX

5
F ENT

ORN
R

X1 Y5

OUT

X2

Handheld Programmer KeystrokesDirectSOFTDS Implied
HPP Used

DS Implied
HPP Used

DL105 User Manual, 3rd Ed. Rev. G 5-11

Chapter 5: Standard RLL Instructions

And (AND)
The AND instruction logically ands a normally open
contact in series with another contact in a rung. The
status of the contact will be the same state as the
associated image register point or memory location.

And Not (ANDN)
The And Not instruction logically “ANDs” a normally
closed contact in series with another contact in a rung.
The status of the contact will be opposite the state of
the associated image register point or memory location.

In the following And example, when input X1 and X2

are on output Y5 will energize.

In the following And Not example, when input X1 is on and X2 is off output Y5 will energize.

Aaaa

Aaaa

Operand Data Type DL-130
Range

 A aaa
Inputs X 0–11
Outputs Y 0–7
Control Relays C 0–377
Stage S 0–377
Timer T 0–77
Counter CT 0–77
Special Relay SP 0–117, 540–577

STR
$

1
B ENT

2
C ENT

OUT
GX

5
F ENT

AND
V

Y5

OUT

X1 X2

Handheld Programmer KeystrokesDirectSOFT

ANDN
W

STR
$

1
B ENT

2
C ENT

OUT
GX

5
F ENT

X1 Y5

OUT

X2

Handheld Programmer KeystrokesDirectSOFT

DS Implied
HPP Used

DS Implied
HPP Used

DL105 User Manual, 3rd Ed. Rev. G5-12

Chapter 5: Standard RLL Instructions

And Store (ANDSTR)
The And Store instruction logically ands two branches
of a rung in series. Both branches must begin with the
Store instruction.

In the following And Store example, the branch consisting of contacts X2, X3, and X4 have
been anded with the branch consisting of contact X1.

Or Store (ORSTR)
The Or Store instruction logically ors two branches
of a rung in parallel. Both branches must begin with
the Store instruction.

In the following Or Store example, the branch consisting of X1 and X2 have been OR’d with
the branch consisting of X3 and X4.

1 2

OUT

STR
$

1
B ENT

STR
$ ENT2

C

AND
V ENT3

D

OR
Q ENT4

E

ANDST
L ENT

OUT
GX

5
F ENT

Y5

OUT

X1 X2

X4

X3

Handheld Programmer KeystrokesDirectSOFTDS Implied
HPP Used

STR
$

1
B ENT

STR
$ ENT

AND
V ENT

OUT
GX

5
F ENT

2
C

3
D

AND
V ENT4

E

ORST
M ENT

Y5

OUT

X1 X2

X3 X4

Handheld Programmer KeystrokesDirectSOFT
DS Implied

HPP Used

1

2

OUT

DL105 User Manual, 3rd Ed. Rev. G 5-13

Chapter 5: Standard RLL Instructions

There are limits to what you can enter with boolean instructions. This is because the DL105
internal CPU uses an 8-level stack to evaluate the various logic elements. The stack is a
temporary storage area that helps solve the logic for the rung. Each time you enter a STR
instruction, the instruction is placed on the top of the stack. Any other instructions on the
stack are pushed down a level. The And Store and Or Store instructions combine levels of the
stack when they are encountered. Since the stack is only eight levels, an error will occur if the
CPU encounters a rung that uses more than the eight levels of the stack.

The following example shows how the stack is used to solve boolean logic.

X1 OR (X2 AND X3)

STR X0 STR X1 STR X2
1 STR X0

2

3

4

5

6

7

8

1 STR X1

2 STR X0

3

4

5

6

7

8

1 STR X2

2 STR X1

3 STR X0

4

5

6

7

8

AND X3
1 X2 AND X3

2 STR X1

3 STR X0

4

5

6

7

8

ORST
1

2 STR X0

3

8

OUT

Y5X0 X1

X2 X3

X4

X5

STR

OR

AND

ORST

ANDST

Output
STR

STR

AND

X4 AND [X1 OR (X2 AND X3)]

AND X4
1

2 STR X0

3

8

X5 OR [X4 AND [X1 OR (X2 AND X3)]]

OR X5
1

2 STR X0

3

8

ANDST

X0 AND [(X5 OR [X4) AND [X1 OR (X2 AND X3)]]]1

2

3

8

DL105 User Manual, 3rd Ed. Rev. G5-14

Chapter 5: Standard RLL Instructions

Out (OUT)
The Out instruction reflects the status of the rung (on/off) and outputs the
discrete (on/off) state to the specified image register point or memory location.
Multiple Out instructions referencing the same discrete location should not
be used since only the last Out instruction in the program will control the
physical output point. Instead, use the next instruction, the Or Out.

In the following Out example, when input X1 is on, output Y2 and Y5 will energize.

Or Out (OROUT)
The Or Out instruction allows more than one rung of discrete logic to
control a single output. Multiple Or Out instructions referencing the
same output coil may be used, since all contacts controlling the output are
logically OR’d together. If the status of any rung is on, the output will also
be on.

In the following example, when X1 or X4 is on, Y2 will energize.

Aaaa
OUT

Operand Data Type Range
DL-130

 A aaa
Inputs X 0–11
Outputs Y 0–7
Control Relays C 0–377

STR
$

1
B ENT

OUT
GX

2
C ENT

OUT
GX ENT5

F

Y2

OUT

X1

Y5

OUT

Handheld Programmer KeystrokesDirectSOFT
DS Used

HPP Used

A aaa
OR OUT

Operand Data Type
Range
DL-130

 A aaa
Inputs X 0–177
Outputs Y 0-177
Control Relays C 0–377

STR
$

1
B ENT

STR
$ ENT4

E

Y2

OR OUT

X1

Y2

OR OUT

X4

Handheld Programmer KeystrokesDirectSOFT

INST#
O

5
F

3
D ENT ENT 2

C ENT

2
C ENTINST#

O
5

F
3

D ENT ENT

DS Used
HPP Used

DL105 User Manual, 3rd Ed. Rev. G 5-15

Chapter 5: Standard RLL Instructions

Positive Differential (PD)
The Positive Differential instruction is typically known as
a one shot. When the input logic produces an off-to-on
transition, the output will energize for one CPU scan.

In the following example, every time X1 makes an off to on transition, C0 will energize for
one scan.

STR
$

1
B ENT

SHFT CV
P

3
DSHFT 0

A ENT

C0

PD

X1

Handheld Programmer KeystrokesDirectSOFT

A aaa
PD

Operand Data Type Range
DL-130

 A aaa
Inputs X 0–11
Outputs Y 0–7
Control Relays C 0–377

DS Used
HPP Used

DL105 User Manual, 3rd Ed. Rev. G5-16

Chapter 5: Standard RLL Instructions

Set (SET)
The Set instruction sets or turns on an image register point/
memory location or a consecutive range of image register
points/memory locations. Once the point/location is set, it
will remain on until it is reset using the Reset instruction. It
is not necessary for the input controlling the Set instruction to
remain on.

Reset (RST)
The Reset instruction resets or turns off an image register point/
memory location or a range of image registers points/memory
locations. Once the point/location is reset, it is not necessary
for the input to remain on.

In the following example, when X1 is on, Y2 through Y5 will energize.

In the following example, when X2 is on, Y2 through Y5 will be reset or de–energized.

A aaa
SET

aaa

Optional
memory range

A aaa
RST

aaa

Optional
Memory range.

Operand Data Type Range
DL-130

A aaa
Inputs X 0–11
Outputs Y 0-7
Control Relays C 0–377
Stage S 0-377
Timer T 0-77
Counter CT 0-77

SET

X1 Y2 Y5

Handheld Programmer KeystrokesDirectSOFT

STR
$

1
B ENT

SET
X ENT2

C
5

F

DS Used
HPP Used

STR
$

2
C ENT

RST
S

2
C

RST

X2 Y2 Y5

Handheld Programmer KeystrokesDirectSOFT

ENT5
F

DS Used
HPP Used

DL105 User Manual, 3rd Ed. Rev. G 5-17

Chapter 5: Standard RLL Instructions

Pause (PAUSE)
The Pause instruction disables the output update on a range of outputs.
The ladder program will continue to run and update the image register;
however, the outputs in the range specified in the Pause instruction will
be turned off at the output points.

In the following example, when X1 is ON, Y5–Y7 will be turned OFF. The execution of the
ladder program will not be affected.

Since the D2–HPP Handheld Programmer does not have a specific Pause key, you can use the
corresponding instruction number for entry (#960) or type each letter of the command.

In some cases, you may want certain output points in the specified pause range to operate
normally. In that case, use Aux 58 to override the Pause instruction.

aaaaaaY

PAUSE

DirectSOFT

PAUSE

X1 Y5 Y7

STR
$

1
B ENT

Handheld Programmer Keystrokes

7
H ENT

INST#
O

9
J

6
G

0
A ENT ENT

5
F

Operand Data Type Range
DL-130

aaa
Outputs Y 0-7

DS Used
HPP Used

DL105 User Manual, 3rd Ed. Rev. G5-18

Chapter 5: Standard RLL Instructions

Comparative Boolean
Store If Equal (STRE)

The Store If Equal instruction begins a new rung or additional
branch in a rung with a normally open comparative contact.
The contact will be on when Aaaa equals Bbbb .

Store If Not Equal (STRNE)
The Store If Not Equal instruction begins a new rung or
additional branch in a rung with a normally closed comparative
contact. The contact will be on when Aaaa does not equal Bbbb.

In the following example, when the value in V-memory location V2000 = 4933 ,
Y3 will energize.

In the following example, when the value in V-memory location V2000 /= 5060,
Y3 will energize.

A aaa B bbb

A aaa B bbb

Y3

OUT

V2000 K5060

DirectSOFT Handheld Programmer Keystrokes

SHFT

OUT
GX ENT3

D

4
E

2
C

0
A

0
A

0
A

STRN
SP

5
F

0
A ENT6

G
0

A

V2000 K4933 Y3

OUT

DirectSOFT Handheld Programmer Keystrokes

STR
$ SHFT 4

E
2

C
0

A
0

A
0

A

4
E

9
J

3
D

3
D ENT

OUT
GX ENT3

D

Operand Data Type Range
DL-130

 B aaa bbb
V-memory V All. (See page 4-29) All. (See page 4-29)
Constant K – 0-FFFF

DL105 User Manual, 3rd Ed. Rev. G 5-19

Chapter 5: Standard RLL Instructions

Or If Equal (ORE)
The Or If Equal instruction connects a normally open
comparative contact in parallel with another contact. The
contact will be on when Aaaa equals Bbbb.

Or If Not Equal (ORNE)
The Or If Not Equal instruction connects a normally closed
comparative contact in parallel with another contact. The
contact will be on when Aaaa does not equal Bbbb.

In the following example, when the value in V-memory location V2000 = 4500 or
V2202 = 2345, Y3 will energize.

In the following example, when the value in V-memory location V2000 = 3916 or
V2002 /= 2500, Y3 will energize.

A aaa B bbb

A aaa B bbb

2
C

5
F ENT0

A
0

A

3
D

9
J ENT1

B
6

G

4
E

Y3

OUT

V2000 K3916

V2002 K2500

DirectSOFT Handheld Programmer Keystrokes

STR
$ SHFT 2

C
0

A
0

A
0

A

ORN
R SHFT 4

E
2

C
0

A
0

A
2

C

OUT
GX ENT3

D

2
C

3
D

4
E

5
F ENT

4
E

5
F ENT0

A
0

A

Y3

OUT

V2002 K2345

V2000 K4500

DirectSOFT Handheld Programmer Keystrokes

SHFT 4
E

2
C

0
A

0
A

0
A

STR
$

OR
Q SHFT 4

E
2

C
0

A
0

A
2

C

OUT
GX ENT3

D

Operand Data Type Range
DL-130

B aaa bbb
V-memory V All. (See page 4-29) All. (See page 4-29)

Constant K – 0-FFFF

DL105 User Manual, 3rd Ed. Rev. G5-20

Chapter 5: Standard RLL Instructions

And If Equal (ANDE)
The And If Equal instruction connects a normally open
comparative contact in series with another contact. The
contact will be on when Aaaa equals Bbbb.

And If Not Equal (ANDNE)
The And If Not Equal instruction connects a normally
closed comparative contact in series with another contact.
The contact will be on when Aaaa does not equal Bbbb

In the following example, when the value in V-memory location V2000 = 5000 and
V2002 = 2345, Y3 will energize.

In the following example, when the value in V-memory location V2000 = 5000 and
V2002 /= 2345, Y3 will energize.

A aaa B bbb

A aaa B bbb

2
C

3
D

4
E

5
F ENT

5
F

0
A ENT0

A
0

A

2
C

STR
$ SHFT 4

E
0

A
0

A
0

A

AND
V SHFT 4

E
2

C
0

A
0

A
2

C

OUT
GX ENT3

D

Y3

OUT

V2002 K2345V2000 K5000

DirectSOFT Handheld Programmer Keystrokes

2
C

3
D

4
E

5
F ENT

5
F

0
A ENT0

A
0

A

2
C

STR
$ SHFT 4

E
0

A
0

A
0

A

ANDN
W SHFT 4

E
2

C
0

A
0

A
2

C

OUT
GX ENT3

D

Y3

OUT

V2002 K2345V2000 K5000

DirectSOFT Handheld Programmer Keystrokes

Operand Data Type
Range
DL-130

A/B aaa bbb
V-memory V All (See page 4-29) All (See page 4-29)

Constant K – 0-FFFF

DL105 User Manual, 3rd Ed. Rev. G 5-21

Chapter 5: Standard RLL Instructions

Store (STR)
The Comparative Store instruction begins a new rung or additional
branch in a rung with a normally open comparative contact. The
contact will be on when Aaaa is equal to or greater than Bbbb.

Store Not (STRN)
The Comparative Store Not instruction begins a new rung or
additional branch in a rung with a normally open comparative
contact. The contact will be on when Aaaa is less than Bbbb.

In the following example, when the value in V-memory location V2000 M 1000,
Y3 will energize.

In the following example, when the value in V-memory location V2000 < 4050,
Y3 will energize.

A aaa B bbb

A aaa B bbb

ENT3
D

Y3

OUT

V2000 K1000

DirectSOFT Handheld Programmer Keystrokes

STR
$

ENT

OUT
GX

SHFT AND
V

2
C

0
A

0
A

0
A

1
B

0
A

0
A

0
A

ENT3
D

0
A ENT0

A
4

E
5

F

Y3

OUT

V2000 K4050

DirectSOFT Handheld Programmer Keystrokes

OUT
GX

STRN
SP SHFT AND

V
2

C
0

A
0

A
0

A

Operand Data Type
Range
DL-130

A/B aaa bbb
V-memory V All (See page 4-29) All (See page 4-29)

Constant K – 0-FFFF
Timer T 0–77
Counter CT 0–77

DL105 User Manual, 3rd Ed. Rev. G5-22

Chapter 5: Standard RLL Instructions

Or (OR)
The Comparative Or instruction connects a normally open
comparative contact in parallel with another contact. The
contact will be on when Aaaa is equal to or greater than
Bbbb.

Or Not (ORN)
The Comparative Or Not instruction connects a normally
open comparative contact in parallel with another contact.
The contact will be on when Aaaa is less than Bbbb.

In the following example, when the value in V-memory location V2000 = 6045 or
V2002 M 2345, Y3 will energize.

In the following example when the value in V-memory location V2000 = 1000 or
V2002 < 2500, Y3 will energize.

A aaa B bbb

A aaa B bbb

2
C

3
D

4
E

5
F ENT

6
G

0
A

Y3

OUT

V2000 K6045

V2002 K2345

DirectSOFT Handheld Programmer Keystrokes

SHFT 4
E

2
C

0
A

0
A

0
A

ENT

STR
$

OR
Q

OUT
GX ENT3

D

4
E

5
F

SHFT AND
V

2
C

0
A

0
A

2
C

ENT3
D

2
C

5
F ENT0

A
0

A

ENT1
B

0
A

0
A

0
A

4
E

Y3

OUT

V2000 K1000

V2002 K2500

DirectSOFT Handheld Programmer Keystrokes

STR
$ SHFT 2

C
0

A
0

A
0

A

ORN
R

OUT
GX

SHFT AND
V

2
C

0
A

0
A

2
C

Operand Data Type
Range
DL-130

A/B aaa bbb
V-memory V All (See page 4-29) All (See page 4-29)

Constant K – 0-FFFF
Timer T 0–77
Counter CT 0–77

DL105 User Manual, 3rd Ed. Rev. G 5-23

Chapter 5: Standard RLL Instructions

And (AND)
The Comparative And instruction connects a normally open
comparative contact in series with another contact. The
contact will be on when Aaaa is equal to or greater than Bbbb.

And Not (ANDN)
The Comparative And Not instruction connects a normally
open comparative contact in series with another contact. The
contact will be on when Aaaa < Bbbb.

In the following example, when the value in V-memory location V2000 = 5000, and V2002
M 2345, Y3 will energize.

In the following example, when the value in V-memory location V2000 = 7000 and
V2002 < 2500, Y3 will energize.

A aaa B bbb

A aaa B bbb

ENT3
D

2
C

3
D

4
E

5
F ENT

ENT0
A

0
A

5
F

0
A

2
CY3

OUT

V2000 K5000 V2002 K2345

DirectSOFT Handheld Programmer Keystrokes

STR
$ SHFT 4

E
0

A
0

A
0

A

AND
V

OUT
GX

SHFT AND
V

2
C

0
A

0
A

2
C

2
C

5
F ENT0

A
0

A

7
H ENT0

A
0

A
0

A

2
C

Y3

OUT

V2000 K7000 V2002 K2500

DirectSOFT Handheld Programmer Keystrokes

STR
$ SHFT 4

E
2

C
0

A
0

A
0

A

ANDN
W

OUT
GX ENT3

D

SHFT AND
V

2
C

0
A

0
A

Operand Data Type
Range
DL-130

A/B aaa bbb
V-memory V All (See page 4-29) All (See page 4-29)

Constant K – 0-FFFF
Timer T 0–77
Counter CT 0–77

DL105 User Manual, 3rd Ed. Rev. G5-24

Chapter 5: Standard RLL Instructions

Immediate Instructions
Store Immediate (STRI)

The Store Immediate instruction begins a new rung or
additional branch in a rung. The status of the contact
will be the same as the status of the associated input point
at the time the instruction is executed. The image register
is not updated.

Store Not Immediate (STRNI)
The Store Not Immediate instruction begins a new rung
or additional branch in a rung. The status of the contact
will be opposite the status of the associated input point at
the time the instruction is executed. The image register is
not updated.

In the following example, when X1 is on, Y2 will energize.

In the following example, when X1 is off, Y2 will energize.

aaaX

aaaX

ENT2
C

1
B ENTX1 Y2

OUT

Handheld Programmer KeystrokesDirectSOFT

STR
$ SHFT 8

I

OUT
GX

Operand Data Type Range
DL-130

 aaa
Inputs X 0–11

ENT2
C

1
B ENT

X1 Y2

OUT

Handheld Programmer KeystrokesDirectSOFT

STRN
SP SHFT 8

I

OUT
GX

DL105 User Manual, 3rd Ed. Rev. G 5-25

Chapter 5: Standard RLL Instructions

Or Immediate (ORI)
The Or Immediate connects two contacts in parallel. The
status of the contact will be the same as the status of the
associated input point at the time the instruction is executed.
The image register is not updated.

Or Not Immediate (ORNI)
The Or Not Immediate connects two contacts in parallel.
The status of the contact will be opposite the status of the
associated input point at the time the instruction is executed.
The image register is not updated.

In the following example, when X1 or X2 is on, Y5 will energize.

In the following example, when X1 is on or X2 is off, Y5 will energize.

aaaX

aaaX

1
B ENT

ENT2
C

ENT5
F

X1

X2

Y5

OUT

Handheld Programmer KeystrokesDirectSOFT

STR
$

OR
Q SHFT 8

I

OUT
GX

ENT5
F

ENT2
C

1
B ENT

X1

X2

Y5

OUT

Handheld Programmer KeystrokesDirectSOFT

STR
$

SHFT 8
I

ORN
R

OUT
GX

Operand Data Type Range
DL-130

 aaa
Inputs X 0–177

DL105 User Manual, 3rd Ed. Rev. G5-26

Chapter 5: Standard RLL Instructions

And Immediate (ANDI)
The And Immediate connects two contacts in series. The status of the contact will be the
same as the status of the associated input point at the time the
instruction is executed. The image register is not updated.

And Not Immediate (ANDNI)
The And Not Immediate connects two contacts in series. The status of the contact will be
opposite the status of the associated input point at the time
the instruction is executed. The image register is not updated.

In the following example, when X1 and X2 are on, Y5 will
energize.

In the following example, when X1 is on and X2 is off, Y5 will energize.

aaaX

aaaX

OUT
GX

X1 X2 Y5

OUT

Handheld Programmer KeystrokesDirectSOFT

STR
$

1
B ENT

AND
V SHFT 8

I ENT2
C

ENT5
F

X1 X2 Y5

OUT

Handheld Programmer KeystrokesDirectSOFT

STR
$

ANDN
W SHFT 8

I

OUT
GX

1
B ENT

ENT2
C

ENT5
F

Operand Data Type Range
DL-130

 aaa
Inputs X 0–11

DL105 User Manual, 3rd Ed. Rev. G 5-27

Chapter 5: Standard RLL Instructions

Out Immediate (OUTI)
The Out Immediate instruction reflects the status of the rung (on/off) and outputs the discrete
(on/off) status to the specified module output point and the image r e g i s t e r
at the time the instruction is executed. If multiple Out Immediate instructions
referencing the same discrete point are used, it is possible for the m o d u l e
output status to change multiple times in a CPU scan. See Or Out Immediate.

Or Out Immediate (OROUTI)
The Or Out Immediate instruction has been designed to use more than one rung of discrete
logic to control a single output. Multiple Or Out Immediate instructions referencing the same
output coil may be used, since all contacts controlling the output are ORed together. If the
status of any rung is on at the time the instruction is executed, the output will also be on.

In the following example, when X1 is on, output point Y2 on the output m o d u l e
will turn on. For instruction entry on the Handheld Programmer, you can use
the instruction number (#350) as shown, or type each letter of the command.

In the following example, when X1 or X4 is on, Y2 will energize.

Y aaa

OUTI

OROUTI

Y aaa

1
B ENTX1 Y2

OUTI

DirectSOFT Handheld Programmer Keystrokes

STR
$

INST#
O

6
G

3
D

0
A ENT ENT

2
C ENT

STR
$

X1

X4

Y2

OR OUTI

Y2

OR OUTI

DirectSOFT Handheld Programmer Keystrokes

STR
$

1
B ENT

ENT4
E

INST#
O

5
F

3
D

0
A ENT ENT

2
C ENT

INST#
O

5
F

3
D

0
A ENT ENT

2
C ENT

Operand Data Type Range
DL-130

aaa
Outputs Y 0-177

DL105 User Manual, 3rd Ed. Rev. G5-28

Chapter 5: Standard RLL Instructions

Set Immediate (SETI)
The Set Immediate instruction immediately sets or
turns on an output or a range of outputs in the image
register and the corresponding output point(s) at the
time the instruction is executed. Once the outputs are
set, it is not necessary for the input to remain on. The
Reset Immediate instruction can be used to reset the
outputs.

Reset Immediate (RSTI)
The Reset Immediate instruction immediately resets
or turns off an output or a range of outputs in the
image register and the output point(s) at the time the
instruction is executed. Once the outputs are reset, it is
not necessary for the input to remain on.

In the following example, when X1 is on, Y2 through Y5 will be set on in the image register
and on the corresponding output points.

In the following example, when X1 is on, Y5 through Y22 will be reset (off) in the image
register and on the corresponding output module(s).

aaaY aaa
SETI

aaaY aaa
RSTI

1
B ENTX1 Y2

SETI

Y5

DirectSOFT Handheld Programmer Keystrokes

STR
$

SET
X SHFT 8

I ENT2
C

5
F

1
B ENT

X1 Y5

RSTI

Y22

DirectSOFT
Handheld Programmer Keystrokes

STR
$

SHFT 8
I

5
F

2
C

2
C ENTRST

S

Operand Data Type Range
DL-130

aaa
Outputs Y 0-177

DL105 User Manual, 3rd Ed. Rev. G 5-29

Chapter 5: Standard RLL Instructions

Timer, Counter and Shift Register Instructions
Using Timers

Timers are used to time an event for a desired length of time. The single input timer will time
as long as the input is on. When the input changes from on to off, the timer current value
is reset to 0. There is a tenth of a second and a hundredth of a second timer available with a
maximum time of 999.9 and 99.99 seconds respectively. A discrete bit is associated with each
timer to indicate that the current value is equal to or greater than the preset value. The timing
diagram below shows the relationship between the timer input, associated discrete bit, current
value, and timer preset.

Some applications that need an accumulating timer, meaning it has the ability to time, stop,
and then resume from where it previously stopped. The accumulating timer works similarly
to the regular timer, but two inputs are required. The enable input starts and stops the timer.
When the timer stops, the elapsed time is maintained. When the timer starts again, the timing
continues from the elapsed time. When the reset input is turned on, the elapsed time is cleared
and the timer will start at 0 when it is restarted. A tenth of a second and a hundredth of
a second timers are available with a maximum time of 9999999.9 and 999999.99 seconds
respectively. The timing diagram below shows the relationship between the timer input, timer
reset, associated discrete bit, current value, and timer preset.

X1

X1

T0

1 2 3 4 5 6 7 80

0 10 10 20 30 40 50 0Current
Value

TMRA T0
K30

X2

X2

 Reset Input

 Enable

Seconds

1/10 Seconds

TMR T1
K30

X1

X1

T1

1 2 3 4 5 6 7 80

0 10 20 30 40 50 60 0Current
Value

T1 Y0
OUT

Seconds

1/10 Seconds

Timer Preset

DL105 User Manual, 3rd Ed. Rev. G5-30

Chapter 5: Standard RLL Instructions

Timer (TMR) and Timer Fast (TMRF)
The Timer instruction is a 0.1 second single-input timer
that times to a maximum of 999.9 seconds. The Timer Fast
instruction is a 0.01 second single input timer that times up
to a maximum of 99.99 seconds. These timers will be enabled
if the input logic is true (on) and will be reset to 0 if the input
logic is false (off).

Instruction Specifications

Timer Reference (Taaa): Specifies the timer number.

Preset Value (Bbbb): Constant value (K) or a V-memory
location. (Pointer (P) for D2-240, D2-250–1, D2-260 and
D2-262).

Current Value: Timer current values are accessed by
referencing the associated V or T memory location. For
example, the timer current value for T3 physically resides in
V-memory location V3.

Discrete Status Bit: The discrete status bit is referenced by the associated T memory location.
It will be ON if the current value is equal to or greater than the preset value. For example, the
discrete status bit for Timer 2 would be T2.

NOTE: Timer preset constants (K(may be changed by using a handheld programmer, even when the CPU is
in Run mode. A V-memory preset is required only if the ladder program or an Operator Interface unit must
change the preset.

NOTE: *Both the Timer discrete status bits and the current value are accessed with the same data
reference with the HPP. DirectSOFT uses separate references, such as “T2” for discrete status bit for
Timer T2, and “TA2” for the current value of Timer T2.

You can perform functions when the timer reaches the specified preset using the discrete status
bit. Or, use the comparative contacts to perform functions at different time intervals based on
one timer. The examples on the following page show these methods of programming timers.

T aaa

aaaTTMR
B bbb

 Preset Timer #

TMRF
B bbb

 Preset Timer #

Operand Data Type DL-130 Range
A/B aaa bbb

Timers T 0–77

V-memory for preset values V – 2000–2377
4000–4177

Pointers (presets only) P

Constants (presets only) K – 0–9999

Timer discrete status bits T/V 0–77 or V41100–41103

Timer current values V/T* 0-77

DL105 User Manual, 3rd Ed. Rev. G 5-31

Chapter 5: Standard RLL Instructions

Timer Example Using Discrete Status Bits
In the following example, a single-input timer is used with a preset of 3 seconds. The timer
discrete status bit (T2) will turn on when the timer has timed for 3 seconds. The timer is reset
when X1 turns off, turning the discrete status bit off and resetting the timer current value to 0.

Timer Example Using Comparative Contacts

In the following example, a single-input timer is used with a preset of 4.5 seconds.
Comparative contacts are used to energize Y3, Y4, and Y5 at one-second intervals
respectively. When X1 is turned off, the timer will be reset to 0 and the comparative contacts
will turn off Y3, Y4, and Y5.

STR
$

TMR
N

2
C

STR
$ SHFT MLR

T
2

C ENT

OUT
GX

Handheld Programmer Keystrokes

X1
TMR T2

K30

T2 Y0

OUT

X1

T2

1 2 3 4 5 6 7 80

0 10 20 30 40 50 60 0Current
Value

Y0

Timing DiagramDirectSOFT

Seconds

1
B ENT

3
D

0
A ENT

ENT0
A

1
B ENT

Handheld Programmer Keystrokes

X1
TMR T20

K45

TA20 K10

TA20 K20

TA20 K30

Y4

OUT

Y3

OUT

Y5

OUT

X1

Y3

1 2 3 4 5 6 7 80

0 10 20 30 40 50 60 0Current
Value

Y4

Timing Diagram

Y5

T2

DirectSOFT

Seconds

STR
$

TMR
N

2
C ENT0

A
4

E
5

F

STR
$ SHFT MLR

T
2

C
0

A
1

B ENT

OUT
GX ENT3

D

STR
$ SHFT MLR

T
2

C
0

A ENT

OUT
GX ENT

2
C

4
E

STR
$ SHFT MLR

T
2

C
0

A ENT

OUT
GX ENT

3
D

5
F

0
A

0
A

0
A

1/10th Seconds

1/10th Seconds

DL105 User Manual, 3rd Ed. Rev. G5-32

Chapter 5: Standard RLL Instructions

Accumulating Timer (TMRA)
The Accumulating Timer is a 0.1 second, two-input timer that
will time to a maximum of 9999999.9. The TMRA uses two timer
registers in V-memory.

Accumulating Fast Timer (TMRAF)
The Accumulating Fast Timer is a 0.01 second two-input timer that
will time to a maximum of 999999.99. The TMRAF uses two timer
registers in V-memory.

These timers have two inputs: an enable and a reset. The timer will
start timing when the enable is on and stop timing when the enable
is off without resetting the value to 0. The reset will reset the timer
when on and allow the timer to time when off.

Instruction Specifications

Timer Reference (Taaa): Specifies the timer number.

Preset Value (Bbbb): Constant value (K) or two consecutive V-memory locations. (Pointer (P)
for D2-240, D2-250–1, D2-260 and D2-262).
Current Value: Timer current values are accessed by referencing the associated V or T memory
location. For example, the timer current value for T3 resides in V-memory location V3.

Discrete Status Bit: The discrete status bit is accessed by referencing the associated T memory
location. It will be on if the current value is equal to or greater than the preset value. For
example, the discrete status bit for Timer 2 would be T2.

NOTE: The accumulating timer uses two consecutive V-memory locations for the 8-digit value; therefore,
two consecutive timer locations. For example, if TMR 1 is used, the next available timer number is TMR 3.

NOTE: * Both the Timer discrete status bits and the current value are accessed with the same data reference
with the HPP. DirectSOFT uses separate references, such as “T2” for discrete status bit for Timer T2, and
“TA2” for the current value of Timer T2.

T aaa

T aaaTMRA
B bbb

Enable

Reset

Preset

TMRAF
B bbb

Enable

Reset

Preset

Timer

Timer

Operand Data Type DL-130 Range
A/B aaa bbb

Timers T 0–77

V-memory for preset values V – 2000–2376
4000–4176

Pointers (presets only) P

Constants (presets only) K – 0–99999999

Timer discrete status bits T/V 0–77 or V41100–41103

Timer current values V/T* 0-77

The following examples show two methods of programming timers. One performs functions
when the timer reaches the preset value using the discrete status bit, or use comparative contacts
to perform functions at different time intervals.

DL105 User Manual, 3rd Ed. Rev. G 5-33

Chapter 5: Standard RLL Instructions

Accumulating Timer Example using Discrete Status Bits
In the following example, a two input timer (accumulating timer) is used with a preset of three
seconds. The timer discrete status bit (T6) will turn on when the timer has timed for three
seconds. Notice in this example that the timer times for one second, stops for one second, then
resumes timing. The timer will reset when C10 turns on, turning the discrete status bit off and
resetting the timer current value to zero.

Accumulator Timer Example Using Comparative Contacts
In the following example, a two-input timer is used with a preset of 4.5 seconds. Comparative
contacts are used to energize Y3, Y4, and Y5 at one-second intervals respectively. The
comparative contacts will turn off when the timer is reset.

Handheld Programmer Keystrokes

TA20 K10

TA21 K1

TA20 K20

Y3

OUT

Y4

OUT

X1

TMRA T20

K45
C10

X1

C10

1 2 3 4 5 6 7 80

0 10 10 20 30 40 50 0Current
Value

Timing Diagram

Y3

Y4

Y5

T20

DirectSOFT

Handheld Programmer Keystrokes (cont’d)

Seconds

AND
V SHFT4

E
MLR

T

OUT
GX ENT

1
B

4
E

STR
$ SHFT

MLR
T

2
C

0
A

OUT
GX ENT

5
F

STR
$

1
B ENT

ENT
4

E
5

F

STR
$ SHFT

MLR
T

2
C

0
A

1
B ENT

OUT
GX ENT

3
D

STR
$ SHFT ENT

2
C

1
B

0
A

2
C

0
A

TMR
N SHFT

0
A

0
A

0
A

Contacts

TA21 K1

TA20 K30 Y5

OUT

TA21 K0

TA21 K0

TA21 K1

OR
Q SHFT4

E
MLR

T
1

B
1

B

ENT

ENT

SHFT

SHFT

2
C

2
C

STR
$ SHFT

MLR
T

2
C

0
A

AND
V SHFT4

E
MLR

T
1

B
0

A

OR
Q SHFT4

E
MLR

T
1

B
1

B

ENT

ENT

SHFT

SHFT

2
C

2
C

ENT
2

C
0

A

ENT
3

D
0

A

AND
V SHFT4

E
MLR

T
1

B
1

B ENTSHFT
2

C

1/10th Seconds

Handheld Programmer Keystrokes

X1

T6

TMRA T6

K30
C10

Y10

OUT

X1

C10

1 2 3 4 5 6 7 80

0 10 10 20 30 40 50 0Current
Value

T6

Timing DiagramDirectSOFT

Seconds

Handheld Programmer Keystrokes (cont’d)

STR
$

STR
$ SHFT ENT2

C
1

B
0

A

TMR
N SHFT 0

A

3
D

0
A ENT

STR
$ SHFT MLR

T ENT

OUT
GX ENT0

A

6
G

1
B

1
B ENT

6
G

1/10th Seconds

DL105 User Manual, 3rd Ed. Rev. G5-34

Chapter 5: Standard RLL Instructions

Using Counters
Counters are used to count events . The counters available are up counters, up/down counters,
and stage counters (used with RLLPLUS programming).

The up counter has two inputs, a count input and a reset input. The maximum count value is
9999. The timing diagram below shows the relationship between the counter input, counter
reset, associated discrete bit, current value, and counter preset.

The up down counter has three inputs, a count up input, count down input and reset input. The
maximum count value is 99999999. The timing diagram below shows the relationship between
the counter input, counter reset, associated discrete bit, current value, and counter preset.

The stage counter has a count input and is reset by the RST instruction. This instruction is
useful when programming using the RLLPLUS structured programming. The maximum count
value is 9999. The timing diagram below shows the relationship between the counter input,
associated discrete bit, current value, counter preset and reset instruction.

X1
X1

CT1

1 2 3 4 0Current
Value

CNT CT1
K3

X2X2

Counter preset

Up

Reset

Counts

X1X1

CT2

1 2 3 4 0Current
Value

SGCNT CT2
K3

RST
CT2

Counter preset

Up

Counts

X1
X1

CT2

1 2 1 2 3 0Current
Value

X2X2

UDC CT2
K3

X3
X3

Counter preset

Up

Down

Reset

Counts

DL105 User Manual, 3rd Ed. Rev. G 5-35

Chapter 5: Standard RLL Instructions

Counter (CNT)
The Counter is a two-input counter that increments
when the count input logic transitions from off to
on. When the counter reset input is on, the counter
resets to zero. When the current value equals the preset
value, the counter status bit comes on and the counter
continues to count up to a maximum count of 9999.
The maximum value will be held until the counter is
reset.

Instruction Specifications

Counter Reference (CTaaa): Specifies the counter number.

Preset Value (Bbbb): Constant value (K) or a V-memory location. (Pointer (P) for D2-240,
D2-250–1, D2-260 and D2-262.)

Current Values: Counter current values are accessed by referencing the associated V or CT
memory locations. The V-memory location is the counter location + 1000. For example, the
counter current value for CT3 resides in V-memory location V1003.

Discrete Status Bit: The discrete status bit is accessed by referencing the associated CT memory
location. It will be on if the value is equal to or greater than the preset value. For example, the
discrete status bit for Counter 2 would be CT2.

NOTE: Counter preset constants (K) may be changed by using a programming device, even when the CPU
is in Run Mode. A V-memory preset is required only if the ladder program or an OIT must used to change
the preset

NOTE: * Both the Counter discrete status bits and the current value are accessed with the same data reference
with the HPP. DirectSOFT uses separate references, such as “CT2” for discrete status bit for Counter CT2,
and “CTA2” for the current value of Counter CT2.

CT aaaCNT
B bbb

Count

Reset

 Counter #

Preset

Operand Data Type DL-130 Range
B aaa bbb

Counters CT 0–77
V-memory for preset values V – 2000–2377
Pointers (presets only) P

Constants (presets only) K – 0–9999

Counter discrete status bits CT/V 0–77 or V41140–41143

Counter current values V/CT* 1000–1077

DL105 User Manual, 3rd Ed. Rev. G5-36

Chapter 5: Standard RLL Instructions

Counter Example Using Discrete Status Bits
In the following example, when X1 makes an off-to-on transition, counter CT2 will increment
by one. When the current value reaches the preset value of 3, the counter status bit CT2 will
turn on and energize Y7. When the reset C10 turns on, the counter status bit will turn off
and the current value will be 0. The current value for counter CT2 will be held in V-memory
location V1002.

Counter Example Using Comparative Contacts
In the following example, when X1 makes an off-to-on transition, counter CT2 will increment
by one. Comparative contacts are used to energize Y3, Y4, and Y5 at different counts. When
the reset C10 turns on, the counter status bit will turn off and the counter current value will be
0, and the comparative contacts will turn off.

2
C

Handheld Programmer Keystrokes

CT2

X1

CNT CT2

K3
C10

Y7

OUT

X1

CT2 or
Y7

1 2 3 4 0Current Value

C10

Counting diagramDirectSOFT

STR
$

1
B ENT

3
D ENT

STR
$ SHFT ENT2

C
1

B
0

A

CNT
GY

STR
$ SHFT ENT

OUT
GX ENT7

H

2
C

MLR
T

2
C

Handheld Programmer Keystrokes (cont)

SHFT

Handheld Programmer Keystrokes

X1

CNT CT2

K3
C10

X1

Y3

1 2 3 4 0Current
Value

C10

Counting diagram

CTA2 K1

CTA2 K2

CTA2 K3

Y4

OUT

Y3

OUT

Y5

OUT

Y4

Y5

DirectSOFT

Handheld Programmer Keystrokes (cont)

STR
$ SHFT

ENT

OUT
GX ENT

2
C

4
E

STR
$ SHFT 2

C

ENT

OUT
GX ENT

3
D

5
F

STR
$

1
B ENT

2
C

STR
$ SHFT

1
B ENT

OUT
GX ENT3

D

STR
$ SHFT ENT2

C
1

B
0

A

CNT
GY ENT3

D

MLR
T

2
C

2
C

MLR
T

2
C

2
C

MLR
T

2
CSHFT

SHFT

SHFT

DL105 User Manual, 3rd Ed. Rev. G 5-37

Chapter 5: Standard RLL Instructions

Stage Counter (SGCNT)
The Stage Counter is a single-input counter that
increments when the input logic transitions from off
to on. This counter differs from other counters since
it will hold its current value until reset using the RST
instruction. The Stage Counter is designed for use in
RLLPLUS programs but can be used in relay ladder logic
programs. When the current value equals the preset value,
the counter status bit turns on and the counter continues
to count up to a maximum count of 9999. The maximum
value will be held until the counter is reset.

Instruction Specifications

Counter Reference (CTaaa): Specifies the counter number.

Preset Value (Bbbb): Constant value (K) or a V-memory location.(Pointer (P) for D2-240,
D2-250–1, D2-260 and D2-262.)

Current Values: Counter current values are accessed by referencing the associated V or CT
memory locations. The V-memory location is the counter location + 1000. For example, the
counter current value for CT3 resides in V-memory location V1003.

Discrete Status Bit: The discrete status bit is accessed by referencing the associated CT memory
location. It will be on if the value is equal to or greater than the preset value. For example, the
discrete status bit for Counter 2 would be CT2.

NOTE: * Both the Counter discrete status bits and the current value are accessed with the same data reference
with the HPP. DirectSOFT uses separate references, such as “CT2” for discrete status bit for Counter CT2,
and “CTA2” for the current value of Counter CT2.

CTaaaSGCNT
B bbb

Preset

Counter #

The counter discrete status bit and the
current value are not specified in the

counter instruction.

Operand Data Type DL-130 Range
B aaa bbb

Counters CT 0–77
V-memory for preset values V – 2000–2377
Pointers (presets only) P

Constants (presets only) K – 0–9999

Counter discrete status bits CT/V 0–77 or V41140–41143

Counter current values V/CT* 1000–1077

DL105 User Manual, 3rd Ed. Rev. G5-38

Chapter 5: Standard RLL Instructions

Stage Counter Example Using Discrete Status Bits
In the following example, when X1 makes an off-to-on transition, stage counter CT7 will
increment by one. When the current value reaches 3, the counter status bit CT7 will turn on
and energize Y7. The counter status bit CT7 will remain on until the counter is reset using
the RST instruction. When the counter is reset, the counter status bit will turn off and the
counter current value will be 0. The current value for counter CT7 will be held in V-memory
location V1007.

Stage

Counter Example Using Comparative Contacts
In the following example, when X1 makes an off-to-on transition, counter CT2 will increment
by one. Comparative contacts are used to energize Y3, Y4, and Y5 at different counts. Although
this is not shown in the example, when the counter is reset using the Reset instruction, the
counter status bit will turn off and the current value will be 0. The current value for counter
CT2 will be held in V-memory location V1002.

3
D

7
H

Handheld Programmer Keystrokes

X1

C5 CT7

SGCNT CT7
K3

RST

X1

Y7

1 2 3 4 0Current
Value

RST
CT7

CT7 Y7

OUT

Counting diagramDirectSOFT

STR
$

1
B ENT

CNT
GY

STR
$ SHFT ENT

OUT
GX ENTH

2
C

MLR
T

7
H

STR
$ SHFT ENT2

C
5

F

RST
S SHFT 2

C
7

H ENT

SHFT RST
S

6
G SHFT

ENT

Handheld Programmer Keystrokes (cont)

SHFT

SHFT

SHFT MLR
T

7

Handheld Programmer Keystrokes

X1

X1

Y3

1 2 3 4 0Current
Value

Counting diagram

CTA2 K1

CTA2 K2

CTA2 K3

Y4

OUT

Y3

OUT

Y5

OUT

Y4

Y5

SGCNT CT2
K10

DirectSOFT

Handheld Programmer Keystrokes (cont)

STR
$

1
B ENT

CNT
GYSHFT RST

S
6

G SHFT

ENT2
C

1
B

0
A

STR
$ SHFT

1
B ENT

OUT
GX ENT3

D

MLR
T

2
C

2
C

STR
$ SHFT

ENT

OUT
GX ENT

2
C

4
E

STR
$ SHFT 2

C

ENT

OUT
GX ENT

3
D

5
F

MLR
T

2
C

2
C

MLR
T

2
CSHFT

SHFT

SHFT

RST
CT2

DL105 User Manual, 3rd Ed. Rev. G 5-39

Chapter 5: Standard RLL Instructions

Up Down Counter (UDC)
This Up/Down Counter counts up on each off-to-on
transition of the Up input and counts down on each
off to on transition of the Down input. The counter
is reset to 0 when the Reset input is on. The count
range is 0 to 99999999. The count input not being
used must be off in order for the active count input to
function.

Instruction Specification

Counter Reference (CTaaa): Specifies the counter
number.

Preset Value (Bbbb): Constant value (K) or two
consecutive V-memory locations. (Pointer (P) for
D2-240, D2-250–1, D2-260 and D2-262).

Current Values: Current count is a double word value
accessed by referencing the associated V or CT memory locations. The V-memory location
is the counter location + 1000. For example, the counter current value for CT5 resides in
V-memory location V1005 and V1006.

Discrete Status Bit: The discrete status bit is accessed by referencing the associated CT memory
location. It will be on if the value is equal to or greater than the preset value. For example, the
discrete status bit for Counter 2 would be CT2.

NOTE: * Both the Counter discrete status bits and the current value are accessed with the same data
reference with the HPP. DirectSOFT uses separate references, such as “CT2” for discrete status bit for
Counter CT2, and “CTA2” for the current value of Counter CT2.

CT aaaUDC
B bbb

Up

Down

Reset

Caution: The UDC uses two
V-memory locations for the 8-digit
current value. This means that the
UDC uses two consecutive
counter locations. If UDC CT1 is
used in the program, the next
available counter is CT3.

Preset

Counter #

Operand Data Type DL-130 Range
B aaa bbb

Counters CT 0–77
V-memory for preset values V – 2000–2377
Pointers (presets only) P

Constants (presets only) K – 0–9999

Counter discrete status bits CT/V 0–77 or V41140–41143

Counter current values V/CT* 1000–1077

DL105 User Manual, 3rd Ed. Rev. G5-40

Chapter 5: Standard RLL Instructions

Up/Down Counter Example Using Discrete Status Bits
In the following example, if X2 and X3 are off, when X1 toggles from off to on the counter will
increment by one. If X1 and X3 are off, the counter will decrement by one when X2 toggles
from off to on. When the count value reaches the preset value of 3, the counter status bit will
turn on. When the reset X3 turns on, the counter status bit will turn off and the current value
will be 0.

Up/Down Counter Example Using Comparative Contacts
In the following example, when X1 makes an off to on transition, counter CT2 will increment
by one. Comparative contacts are used to energize Y3 and Y4 at different counts. When the
reset (X3) turns on, the counter status bit will turn off, the current value will be 0, and the
comparative contacts will turn off.

3
D ENT

Handheld Programmer Keystrokes

X1
UDC CT2

K3
X2

X3

CT2 Y10

OUT

X1

CT2

1 2 1 2 3 0Current
Value

X2

X3

Counting DiagramDirectSOFT

Handheld Programmer Keystrokes (cont)

STR
$

1
B ENT

STR
$

2
C

STR
$

3
D

SHFT ISG
U

3
D

2
C

2
C

ENT

ENT STR
$ SHFT ENT

OUT
GX ENT0

A
1

B
2

C
MLR

T
2

CSHFT

AND
V

Handheld Programmer Keystrokes

X1
UDC CT2

V2000
X2

X3

X1

X2

X3

Counting Diagram

CTA2 K1

CTA2 K2 Y4

OUT

Y3

OUT
Y3

1 2 3 4 0Current
Value

Y4

DirectSOFT

Handheld Programmer Keystrokes (cont)

STR
$

1
B ENT

STR
$

2
C

STR
$

3
D

SHFT ISG
U

3
D

2
C

2
C

ENT

ENT

SHFT ENT2
C

0
A

0
A

0
A

STR
$ SHFT

1
B ENT

OUT
GX ENT3

D

MLR
T

2
C

2
C

STR
$ SHFT

ENT

OUT
GX ENT

MLR
T

2
C

2
C

2
C

4
E

SHFT

SHFT

DL105 User Manual, 3rd Ed. Rev. G 5-41

Chapter 5: Standard RLL Instructions

Shift Register (SR)
The Shift Register instruction shifts data through a
predefined number of control relays. The control ranges in
the shift register block must start at the beginning of an 8-bit
boundary and use 8-bit blocks.

The Shift Register has three contacts.
• Data — determines the value (1 or 0) that will enter the

register
• Clock — shifts the bits one position on each low to

high transition
• Reset —resets the Shift Register to all zeros.

With each off-to-on transition of the clock input, the bits which make up the shift register
block are shifted by one bit position and the status of the data input is placed into the starting
bit position in the shift register. The direction of the shift depends on the entry in the From
and To fields. From C0 to C17 would define a block of 16 bits to be shifted from left to
right. From C17 to C0 would define a block of 16 bits, to be shifted from right to left. The
maximum size of the shift register block depends on the number of available control relays.
The minimum block size is 8 control relays.

Operand Data Type DL-130 Range
 A/B aaa bbb

Control Relay C 0-377 0-377

SR

aaaFrom A

bbbTo B

DATA

CLOCK

RESET

Data Input

Clock Input

Reset Input

Shift Register Bits

C0 C17
Reset

1 1 0

0 1 0

0 1 0

1 1 0

0 1 0

0 0 1

Inputs on Successive Scans

X1

X2

SR

C0From

C17
X3

To

Handheld Programmer KeystrokesDirectSOFT

STR
$

1
B ENT

STR
$

2
C

STR
$

3
D

SHFT

ENT

ENT

RST
S

ORN
R SHFT 0

A

1
B

7
H ENT

SHFT

Indicates
ON

Indicates
OFF

Clock Data

DL105 User Manual, 3rd Ed. Rev. G5-42

Chapter 5: Standard RLL Instructions

Accumulator/Stack Load and Output Data Instructions
Using the Accumulator

The accumulator in the DL105 series CPUs is a 32-bit register that is used as a temporary
storage location for data that is being copied or manipulated in some manner. For example, you
have to use the accumulator to perform math operations, such as, add, subtract, multiply, etc.
Since there are 32 bits, you can use up to an 8-digit BCD number or a 32-bit 2’s compliment
number. The accumulator is reset to 0 at the end of every CPU scan.

Copying Data to the Accumulator
The Load and Out instructions and their variations are used to copy data from a V-memory
location to the accumulator, or to copy data from the accumulator to V-memory. The
following example copies data from V-memory location V1400 to V-memory location V1410.

Since the accumulator is 32 bits and V-memory locations are 16 bits, the Load Double and
Out Double (or variations thereof) use two consecutive V-memory locations or 8-digit BCD
constants to copy data either to the accumulator from a V-memory address or from a V-memory
address to the accumulator. For example, if you wanted to copy data from V1400 and V1401
to V1410 and V1411, the most efficient way to perform this function would be as follows:

LD

V1400

X1

Copy data from V1400 to the
lower 16 bits of the
accumulator

Copy data from the lower 16 bits
of the accumulator to V1410

OUT

V1410

V1410

Acc.

V1400

8 9 3 5

8 9 3 5

0 0 0 0 8 9 3 5

Unused accumulator bits
are set to zero

LDD

V1400

Copy data from V1400 and
V1401 to the accumulator

Copy data from the accumulator to
V1410 and V1411

OUTD

V1410

V1410

Acc.

V1400

5 0 2 6

5 0 2 6

6 7 3 9 5 0 2 6

X1 V1401

6 7 3 9

V1411

6 7 3 9

DL105 User Manual, 3rd Ed. Rev. G 5-43

Chapter 5: Standard RLL Instructions

Changing the Accumulator Data
Instructions that manipulate data also use the accumulator. The result of the manipulated
data resides in the accumulator. The data that was being manipulated is cleared from the
accumulator. The following example loads the constant value 4935 into the accumulator, shifts
the data right 4 bits, and outputs the result to V2010.

Some of the data manipulation instructions use 32 bits. They use two consecutive V memory
locations or an 8 digit BCD constant to manipulate data in the accumulator.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded into the
accumulator using the Load Double instruction. The value in the accumulator is added with the
value in V2006 and V2007 using the Add Double instruction. The value in the accumulator is
copied to V2010 and V2011 using the Out Double instruction.

6 7 3 9 5 0 2 6

LDD
V2000

X1

Load the value in V2000 and
V2001 into the accumulator

ADDD
V2006

Add the value in the
accumulator with the value
in V2006 and V2007

OUTD
V2010

Copy the value in the
accumulator to V2010 and
V2011

V2010

V2000

5 0 2 6

9 0 7 2

V2001

6 7 3 9

V2011

8 7 3 9

(V2006 and V2007)

(Accumulator)

2 0 0 0 4 0 4 6+

9 0 7 28 7 3 9Acc.

LD
K4935

X1

Load the value 4935 into the
accumulator

Shift the data in the accumulator
4 bits (K4) to the right

Output the lower 16 bits of the ac-
cumulator to V2010

0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1

Constant

V2010

0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Shifted out of
accumulator

0 4 9 3

4 9 3 5

SHFR
K4

OUT
V2010

. . . .

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The upper 16 bits of the accumulator
will be set to 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

DL105 User Manual, 3rd Ed. Rev. G5-44

Chapter 5: Standard RLL Instructions

Using the Accumulator Stack
The accumulator stack is used for instructions that require more than one parameter to
execute a function or for user-defined functionality. The accumulator stack is used when more
than one Load instruction is executed without the use of an Out instruction. The first Load
instruction in the scan places a value into the accumulator. Every Load instruction thereafter
without the use of an Out instruction places a value into the accumulator and the value that
was in the accumulator is placed onto the accumulator stack. The Out instruction nullifies the
previous Load instruction and does not place the value that was in the accumulator onto the
accumulator stack when the next Load instruction is executed. Every time a value is placed
onto the accumulator stack, the other values in the stack are pushed down one location. The
accumulator is eight levels deep (eight 32-bit registers). If there is a value in the eighth location
when a new value is placed onto the stack, the value in the eighth location is pushed off the
stack and cannot be recovered.

The POP instruction rotates values upward through the stack into the accumulator. When
a POP is executed, the value that was in the accumulator is cleared and the value that was on
top of the stack is in the accumulator. The values in the stack are shifted up one position in
the stack.

Acc.Load the value 3245 into the accumu-
lator

Load the value 5151 into the accumu-
lator, pushing the value 3245 onto the
stack

Load the value 6363 into the accumu-
lator, pushing the value 5151 to the 1st
stack location and the value 3245 to
the 2nd stack location

LD

K3245

X1

LD

K5151

LD

K6363

Constant

Acc. X X X X X X X X X

Current Acc. value

Previous Acc. value
X X X X X X X X
X X X X X X X
X X X X X X X

 Level 1

X X X X X X X X Level 2

X X X X X X X X Level 3

X X X X X X X X Level 4

X X X X X X X X Level 5

X X X X X X X X Level 6

X X X X X X X X Level 7

X X X X X X X X Level 8

Accumulator Stack

0 0 0 0 3 2 4 5 Level 1

X X X X X X X X Level 2

X X X X X X X X Level 3

X X X X X X X X Level 4

X X X X X X X X Level 5

X X X X X X X X Level 6

X X X X X X X X Level 7

X X X X X X X X Level 8

Accumulator Stack

Acc.

Constant 5 1 5 1

0 0 0 0 5 5 1 5 1

Acc. 0 0 0 0 3 2 4 5 3 2 4 5

Current Acc. value

Previous Acc. value

0 0 0 0 5 1 5 1

0 0 0 0

 Level 1

0 0 0 0 3 2 4 5 Level 2

X X X X X X X X Level 3

X X X X X X X X Level 4

X X X X X X X X Level 5

X X X X X X X X Level 6

X X X X X X X X Level 7

X X X X X X X X Level 8

Accumulator Stack

Acc.

Constant 6 3 6 3

0 0 0 0 6 3 6 3 6 3 6 3

Acc. 0 0 0 0 5 5 1 5 1

Current Acc. value

Previous Acc. value

Bucket

Bucket

Bucket

3 2 4 5

0 0 0 0 3 2 4 5

DL105 User Manual, 3rd Ed. Rev. G 5-45

Chapter 5: Standard RLL Instructions

Acc.

POP the 1st value on the stack into the
accumulator and move stack values
up one location

POPX1

POP

POP

V2000 4 5 4 5

X X X X X X XX X X X

Acc. 0 0 0 0 4 54 5 4 5

Previous Acc. value

Current Acc. value

0 0 0 0 3 7 9 2Level 1

0 0 0 0 7 9 3 0Level 2

X X X X X X X X
??

Level 3

X X X X X X X XLevel 4

X X X X X X X XLevel 5

X X X X X X X XLevel 6

X X X X X X X XLevel 7

X X X X X X X XLevel 8

Accumulator Stack

0 0 0 0 7 9 3 0Level 1

X X X X X X X XLevel 2

X X X X X X X XLevel 3

X X X X X X X XLevel 4

X X X X X X X XLevel 5

X X X X X X X XLevel 6

X X X X X X X XLevel 7

X X X X X X X XLevel 8

Accumulator Stack

X X X X X X X XLevel 1

X X X X X X X XLevel 2

X X X X X X X XLevel 3

X X X X X X X XLevel 4

X X X X X X X XLevel 5

X X X X X X X XLevel 6

X X X X X X X XLevel 7

X X X X X X X XLevel 8

Accumulator Stack

POP the 1st value on the stack into the
accumulator and move stack values
up one location

POP the 1st value on the stack into the
accumulator and move stack values
up one location

OUT

V2000

OUT

V2001

Acc.

V2001 3 7 9 2

0 0 0 0 4 5 4 54 5 4 5

Acc. 0 0 0 0 3 7 9 23 7 9 2

Previous Acc. value

Current Acc. value

Acc.

V2002 7 9 3 0

0 0 0 0 3 4 6 03 7 9 2

Acc. X X X X 7 9 3 0

Previous Acc. value

Current Acc. value

OUT

V2002

Copy data from the accumulator to
V2000

Copy data from the accumulator to
V2001.

Copy data from the accumulator to
V2002

DL105 User Manual, 3rd Ed. Rev. G5-46

Chapter 5: Standard RLL Instructions

Using Pointers
Many of the DL105 series instructions will allow V-memory pointers as an operand. Pointers
can be useful in ladder logic programming, but can be difficult to understand or implement
in your application if you do not have prior experience with pointers (commonly known as
indirect addressing). Pointers allow instructions to obtain data from V-memory locations
referenced by the pointer value.

NOTE: In the DL105, V-memory addressing is in octal. However the value in the pointer location which will
reference a V-memory location is viewed as HEX. Use the Load Address instruction to move an address into
the pointer location. This instruction performs the Octal to Hexadecimal conversion automatically.

The following example uses a pointer operand in a Load instruction. V-memory location
3000 is the pointer location. V3000 contains the value 400, which is the HEX equivalent of
the Octal address V-memory location V2000. The CPU copies the data from V2000 into the
lower word of the accumulator.

The following example is similar to the one above, except for the LDA (load address) instruction,
which automatically converts the Octal address to the Hex equivalent.

V3000 (P3000) contains the value 400
Hex. 400 Hex. = 2000 Octal which
contains the value 2635.

LD

P3000

X1

OUT

V3100

Copy the data from the lower 16 bits of
the accumulator to V3100.

V3000

0 4 0 0

2 6 3 5

X X X X

X X X X

X X X X

X X X X

X X X X

V3100 2 6 3 5

V3101 X X X X

2 6 3 5

Accumulator

V2000

V2001

V2002

V2003

V2004

V2005

V3000 (P3000) contains the value 400
HEX = 2000 Octal which contains the
value 2635

LDA

O 2000

X1

OUT

V 3000

Copy the data from the lower 16 bits of
the accumulator to V3000

V3000

0 4 0 0

2 6 3 5

X X X X

X X X X

X X X X

X X X X

X X X X

V3100 2 6 3 5

V3101 X X X X

LD

P 3000

OUT

V 3100

Copy the data from the lower 16 bits of
the accumulator to V3100

Load the lower 16 bits of the
accumulator with Hexadecimal
equivalent to Octal 2000 (400))

V3000

Acc.

2 0 0 0

0 4 0 0

0 0 0 0 0 4 0 0

2000 Octal is converted to Hexadecimal
400 and loaded into the accumulator

Accumulator

0 0 0 0 2 6 3 5

Unused accumulator bits
are set to zero

V2000

V2001

V2002

V2003

V2004

V2005

DL105 User Manual, 3rd Ed. Rev. G 5-47

Chapter 5: Standard RLL Instructions

Load (LD)
The Load instruction is a 16-bit instruction that loads the value
(Aaaa), which is either a V-memory location or a 4-digit constant,
into the lower 16 bits of the accumulator. The upper 16 bits of
the accumulator are set to 0.

NOTE: Two consecutive Load instructions will place the value of the first Load instruction onto the
accumulator stack.

In the following example, when X1 is on, the value in V2000 will be loaded into the accumulator
and output to V2010.

LD
A aaa

Discrete Bit Flags Description
SP76 ON when the value loaded into the accumulator by any instruction is zero.

LD
V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

OUT
V2010

Copy the value in the lower
16 bits of the accumulator to
V2010

V2010

Acc.

V2000
8 9 3 5

8 9 3 5

0 0 0 0 8 9 3 58 9 3 5

DirectSOFT

The unused accumulator
bits are set to zero

1
B

2
C

0
A

0
A

0
A ENT

Handheld Programmer Keystrokes

STR
$ ENT

SHFT ANDST
L

3
D

OUT
GX SHFT AND

V
2

C
0

A
1

B
0

A ENT

Operand Data Type DL130 Range
A aaa

V-memory for preset values V All (See page 4-29)
Pointers (presets only) P All V mem (See page 4-29)

Constants (presets only) K 0–FFFF

DL105 User Manual, 3rd Ed. Rev. G5-48

Chapter 5: Standard RLL Instructions

Load Double (LDD)
The Load Double instruction is a 32-bit instruction that loads
the value (Aaaa), which is either two consecutive V-memory
locations or an 8-digit constant value, into the accumulator.

NOTE: Two consecutive Load instructions will place the value of the first load instruction onto the
accumulator stack.

In the following example, when X1 is on, the 32-bit value in V2000 and V2001 will be loaded
into the accumulator and output to V2010 and V2011.

LDD
A aaa

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

Handheld Programmer Keystrokes

DirectSOFT

LDD
V2000

X1

Load the value in V2000 and
V2001 into the 32 bit
accumulator

OUTD
V2010

Copy the value in the 32 bit
accumulator to V2010 and
V2011

V2010

Acc.

V2000

6 7 3 9 6 0 2 6 5 0 2 6?

V2001

?
6 7 3 9 5 0 2 6

V2011

6 7 3 9 5 0 2 6

STR
$

SHFT ANDST
L

3
D

3
D

OUT
GX SHFT 3

D

Discrete Bit Flags Description
SP76 On when the value loaded into the accumulator by any instruction is zero.

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)
Pointer P All V mem (See page 4-29)

Constant K 0–FFFFFFFF

DL105 User Manual, 3rd Ed. Rev. G 5-49

Chapter 5: Standard RLL Instructions

Load Formatted (LDF)
The Load Formatted instruction loads 1 to 32 consecutive bits
from discrete memory locations into the accumulator. The
instruction requires a starting location (Aaaa) and the number
of bits (Kbbb) to be loaded. Unused accumulator bit locations
are set to zero.

NOTE: Two consecutive Load instructions will place the value of the first Load instruction onto the
accumulator stack.

In the following example, when C0 is on, the binary pattern of C10–C16 (7 bits) will be
loaded into the accumulator using the Load Formatted instruction. The lower 7 bits of the
accumulator are output to Y0–Y6 using the Out Formatted instruction.

bbbK
LDF A aaa

0
A

7
H ENT

Handheld Programmer Keystrokes

LDF C10
K7

C0

Load the status of 7
consecutive bits (C10–C16)
into the accumulator

OUTF Y0
K7

Copy the value from the
specified number of bits in
the accumulator to Y0 – Y6

K7C10

Location Constant

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

K7Y0

Location Constant

C16 C15 C14 C13 C12 C11 C10

OFFONONONOFFOFFOFF

 ? ? ? ? ? Y6 Y5 Y4 Y3 Y2 Y1 Y0
OFFONONONOFFOFFOFF

The unused accumulator bits are set to zero

DirectSOFT

STR
$ SHFT ENT2

C
0

A

SHFT ANDST
L

3
D

5
F

SHFT 2
C

1
B

0
A

7
H ENT

OUT
GX SHFT 5

F

Operand Data Type DL130 Range
A aaa bbb

Inputs X 0–1 –
Outputs Y 0–7 –
Control Relays C 0–377 –
Stage bits S 0–377 –
Timer bits T 0–77 –
Counter bits CT 0–77 –
Special Relays SP 0–117, 540–577 –
Constant K – 1–32

Discrete Bit Flags Description
SP76 ON when the value loaded into the accumulator by any instruction is zero.

DL105 User Manual, 3rd Ed. Rev. G5-50

Chapter 5: Standard RLL Instructions

Load Address (LDA)
The Load Address instruction is a 16-bit instruction. It converts
any octal value or address to the HEX equivalent value and loads
the HEX value into the accumulator. This instruction is useful
when an address parameter is required since all addresses for the
DL205 system are in octal.

NOTE: Two consecutive Load instructions will place the value of the first Load instruction onto the
accumulator stack.

In the following example, when X1 is on, the octal number 40400 will be converted to a HEX
4100 and loaded into the accumulator using the Load Address instruction. The value in the
lower 16 bits of the accumulator is copied to V2000 using the Out instruction.

O aaa
LDA

Discrete Bit Flags Description
SP76 ON when the value loaded into the accumulator by any instruction is zero.

Operand Data Type DL130 Range
aaa

Octal Address O All V-memory (See page 4-29)

1
B ENT

4
E

0
A

4
E

0
A

0
A ENT

Handheld Programmer Keystrokes

DirectSOFT

LDA
O 40400

X1

Load The HEX equivalent to
the octal number into the
lower 16 bits of the
accumulator

OUT
V2000

Copy the value in lower 16
bits of the accumulator to
V2000

V2000

Acc.

Hexadecimal
4 1 0 0

4 1 0 0

0 0 0 0 4 1 0 0

Octal
4 0 4 0 0

The unused accumulator
 bits are set to zero

STR
$

SHFT ANDST
L

3
D

0
A

OUT
GX SHFT AND

V
2

C
0

A
0

A ENT0
A

DL105 User Manual, 3rd Ed. Rev. G 5-51

Chapter 5: Standard RLL Instructions

Out (OUT)
The Out instruction is a 16-bit instruction that copies the
value in the lower 16 bits of the accumulator to a specified
V-memory location (Aaaa).

In the following example, when X1 is on, the value in V2000 will be loaded into the lower
16 bits of the accumulator using the Load instruction. The value in the lower 16 bits of the
accumulator are copied to V2010 using the Out instruction.

OUT
A aaa�

�
�
�
�

230

240

250-1

260

262

2
C

0
A

0
A

0
A ENT

1
B ENT

Handheld Programmer Keystrokes

STR
$

SHFT ANDST
L

3
D

OUT
GX SHFT AND

V
2

C
0

A
1

B
0

A ENT

LD
V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

OUT
V2010

Copy the value in the lower
16 bits of the accumulator to
V2010 V2010

Acc.

V2000
8 9 3 5

8 9 3 5

0 0 0 0 8 9 3 58 9 3 5

DirectSOFT

The unused accumulator
 bits are set to zero

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)
Pointer P All V mem (See page 4-29)

DL105 User Manual, 3rd Ed. Rev. G5-52

Chapter 5: Standard RLL Instructions

Out Double (OUTD)
The Out Double instruction is a 32-bit instruction that
copies the value in the accumulator to two consecutive
V-memory locations at a specified starting location (Aaaa).

In the following example, when X1 is on, the 32-bit value in V2000 and V2001 will be loaded
into the accumulator using the Load Double instruction. The value in the accumulator is
output to V2010 and V2011 using the Out Double instruction.

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

1
B ENT

Handheld Programmer Keystrokes

V2010

Acc.

V2000

6 7 3 9 5 0 2 6 5 0 2 6?

V2001

?
6 7 3 9 5 0 2 6

V2011
6 7 3 9 5 0 2 6

Load the value in V2000 and
V2001 into the accumulator

LDD

OUTD

Copy the value in the
accumulator to V2010 and
V2011

V2000

X1

V2010

DirectSOFT

STR
$

SHFT ANDST
L

3
D

3
D

OUT
GX SHFT 3

D

OUTD
A aaa

�
�
�
�
�

230

240

250-1

260

262 Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)
Pointer P All V mem (See page 4-29)

DL105 User Manual, 3rd Ed. Rev. G 5-53

Chapter 5: Standard RLL Instructions

Out Formatted (OUTF)
The Out Formatted instruction outputs 1 to 32 bits from the
accumulator to the specified discrete memory locations. The
instruction requires a starting location (Aaaa) for the destination
and the number of bits (Kbbb) to be output.

In the following example, when C0 is on, the binary pattern of C10–C16 (7 bits) will be
loaded into the accumulator using the Load Formatted instruction. The lower 7 bits of the
accumulator are output to Y20–Y26 using the Out Formatted instruction.

bbbK
OUTF A aaa

0
A

7
H ENT

Handheld Programmer Keystrokes

LDF C10
K7

C0

Load the status of 7
consecutive bits (C10–C16)
into the accumulator

OUTF Y20
K7

Copy the value of the
specified number of bits
from the accumulator to
Y20–Y26

K7C10

Location Constant

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

K7Y20

Location Constant

C16 C15 C14 C13 C12 C11 C10
OFFONONONOFFOFF OFF

Y21 Y20Y23 Y22Y26 Y25 Y24

OFFONONONOFFOFFOFF

The unused accumulator bits are set to zero

Accumulator

DirectSOFT

STR
$ SHFT ENT2

C
0

A

SHFT ANDST
L

3
D

5
F

SHFT 2
C

1
B

0
A

7
H ENT

OUT
GX SHFT 5

F

2
C

Operand Data Type DL130 Range
A aaa bbb

Inputs X 0–1 –
Outputs Y 0–7 –
Control Relays C 0–377 –
Constant K – 1–32

DL105 User Manual, 3rd Ed. Rev. G5-54

Chapter 5: Standard RLL Instructions

Pop (POP)
The Pop instruction moves the value from the first level
of the accumulator stack (32 bits) to the accumulator
and shifts each value in the stack up one level. In the
example below, when C0 is on, the value 4545 that was
on top of the stack is moved into the accumulator using
the Pop instruction. The value is output to V2000 using the Out instruction. The next Pop
moves the value 3792 into the accumulator and outputs the value to V2001. The last Pop
moves the value 7930 into the accumulator and outputs the value to V2002. Please note if
the value in the stack were greater than 16 bits (4 digits) the Out Double instruction would
be used and two V-memory locations for each Out Double must be allocated.

POP

Handheld Programmer Keystrokes

Acc.

Pop the 1st. value on the stack into the
accumulator and move stack values
up one location

POPC0

POP

POP

V2000 4 5 4 5

X X X X X X X XX X X X

Acc. 0 0 0 0 4 5 4 54 5 4 5

Previous Acc. value

Current Acc. value

0 0 0 0 3 7 9 2
0 0

Level 1

0 0 0 0 7 9 3 0Level 2

X X X X X X X XLevel 3

X X X X X X X XLevel 4

X X X X X X X XLevel 5

X X X X X X X XLevel 6

X X X X X X X XLevel 7

X X X X X X X XLevel 8

Accumulator Stack

0 0 0 0 7 9 3 0Level 1

X X X X X X X XLevel 2

X X X X X X X XLevel 3

X X X X X X X XLevel 4

X X X X X X X XLevel 5

X X X X X X X XLevel 6

X X X X X X X XLevel 7

X X X X X X X XLevel 8

Accumulator Stack

X X X X X X X XLevel 1

X X X X X X X XLevel 2

X X X X X X X XLevel 3

X X X X X X X XLevel 4

X X X X X X X XLevel 5

X X X X X X X XLevel 6

X X X X X X X XLevel 7

X X X X X X X XLevel 8

Accumulator Stack

Pop the 1st. value on the stack into the
accumulator and move stack values
up one location

Pop the 1st. value on the stack into the
accumulator and move stack values
up one location

OUT
V2000

OUT
V2001

Acc.

V2001 3 7 9 2

0 0 0 0 4 5 4 54 5 4 5

Acc. 0 0 0 0 3 7 9 2

Previous Acc. value

Current Acc. value

Acc.

V2002 7 9 3 0

0 0 0 0 3 7 9 2

Acc. 0 0 0 0 7 9 3 0

Previous Acc. value

Current Acc. value

OUT
V2002

Copy the value in the lower 16 bits of
the accumulator to V2000

Copy the value in the lower 16 bits of
the accumulator to V2001

Copy the value in the lower 16 bits of
the accumulator to V2002

DirectSOFT

STR
$ SHFT 2

C
0

A ENT

SHFT CV
P

INST#
O

CV
P ENT

OUT
GX SHFT AND

V
2

C
0

A
0

A ENT0
A

SHFT CV
P

INST#
O

CV
P ENT

OUT
GX SHFT AND

V
2

C
0

A ENT0
A

1
B

SHFT CV
P

INST#
O

CV
P ENT

OUT
GX SHFT AND

V
2

C
0

A ENT0
A

2
C

SHFT

SHFT

SHFT

Discrete Bit Flags Description
SP63 ON when the result of the instruction causes the value in the accumulator to be zero.

DL105 User Manual, 3rd Ed. Rev. G 5-55

Chapter 5: Standard RLL Instructions

Logical Instructions (Accumulator)
And (AND)

The And instruction is a 16-bit instruction that logically
ANDs the value in the lower 16 bits of the accumulator with a
specified V-memory location (Aaaa). The result resides in the
accumulator. The discrete status flag indicates if the result of
the And is zero.

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, the value in V2000 will be loaded into the accumulator
using the Load instruction. The value in the accumulator is anded with the value in V2006
using the And instruction. The value in the lower 16 bits of the accumulator is output to
V2010 using the Out instruction.

Discrete Bit Flags Description
SP63 ON when the result of the instruction causes the value in the accumulator to be zero.

AND
A aaa

AND (V2006)

Handheld Programmer Keystrokes

LD
V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

AND
V2006

AND the value in the
accumulator with
 the value in V2006

OUT
V2010

Copy the lower 16 bits of the
accumulator to V2010

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

V2000
2 8 7 A?

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The upper 16 bits of the accumulator
will be set to 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Acc.

0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6A38

V2010

2 8 3 8

DirectSOFT

STR
$

SHFT ANDST
L

3
D

SHFT AND
V

2
C

0
A

0
A ENT6

G

OUT
GX SHFT AND

V
2

C
0

A
1

B
0

A ENT

AND
V

1
B ENT

2
C

0
A

0
A

0
A ENT

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)

DL105 User Manual, 3rd Ed. Rev. G5-56

Chapter 5: Standard RLL Instructions

And Double (ANDD)
The And Double is a 32-bit instruction that logically
ANDs the value in the accumulator with two consecutive
V-memory locations or an 8-digit (max) constant value
(Aaaa). The result resides in the accumulator. Discrete
status flags indicate if the result of the And Double is zero or
a negative number (the most significant bit is on).

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded into
the accumulator using the Load Double instruction. The value in the accumulator is anded
with 36476A38 using the And Double instruction. The value in the accumulator is output to
V2010 and V2011 using the Out Double instruction.

A aaa
ANDD

AND 36476A38

Handheld Programmer Keystrokes

LDD
V2000

X1

Load the value in V2000 and
V2001 into the accumulator

ANDD
K36476A38

AND the value in the
accumulator with
 the constant value
36476A38

OUTD
V2010

Copy the value in the
accumulator to V2010 and
V2011

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

2 8 7 A

0 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0

0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

Acc.

V2010

2 8 3 8

5 4 7 E

V2011

1 4 4 6

0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1

DirectSOFT

STR
$

SHFT ANDST
L

3
D

SHFT

OUT
GX

3
D

SHFT 3
D

AND
V SHFT 3

D
8

I
3

DSHFTSHFTJMP
K

0
A

3
D

6
G

4
E

7
H

6
G ENT

1
B ENT

2
C

0
A

1
B

0
A ENT

2
C

0
A

0
A ENT0

A

V2000 V2000

Discrete Bit Flags Description
SP63 Will be ON if the result in the accumulator is zero
SP70 Will be ON if the result in the accumulator is negative

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)
Constant K 0–FFFFFFFF

DL105 User Manual, 3rd Ed. Rev. G 5-57

Chapter 5: Standard RLL Instructions

Or (OR)
The Or instruction is a 16-bit instruction that logically
ORs the value in the lower 16 bits of the accumulator with
a specified V-memory location (Aaaa). The result resides
in the accumulator. The discrete status flag indicates if the
result of the OR is zero.

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, the value in V2000 will be loaded into the accumulator
using the Load instruction. The value in the accumulator is OR’d with V2006 using the OR
instruction. The value in the lower 16 bits of the accumulator are output to V2010 using the
Out instruction.

Discrete Bit Flags Description
SP63 Will be ON if the result in the accumulator is zero

OR
A aaa

3
D

OR (V2006)

Handheld Programmer Keystrokes

LD
V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

OR
V2006

Or the value in the
accumulator with
 the value in V2006

OUT
V2010

Copy the value in the lower
16 bits of the accumulator to
V2010

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

0 1 1 0 1 0 1 0 0 1 1 1 1 0 1 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

V2000
2 8 7 A

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The upper 16 bits of the accumulator
will be set to 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 131 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Acc.

0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6A38

V2010

6 A 7 A

DirectSOFT

STR
$

1
B ENT

SHFT ANDST
L

2
C

0
A

0
A

0
A ENT

SHFT AND
V

2
C

0
A

0
A ENT6

G

OUT
GX SHFT AND

V
2

C
0

A
1

B
0

A ENT

OR
Q

0

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)

DL105 User Manual, 3rd Ed. Rev. G5-58

Chapter 5: Standard RLL Instructions

Or Double (ORD)
The Or Double is a 32-bit instruction that ORs the value in
the accumulator with the value (Aaaa) or an 8-digit (max)
constant value. The result resides in the accumulator.
Discrete status flags indicate if the result of the Or Double
is zero or a negative number (the most significant bit is on).

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded into
the accumulator using the Load Double instruction. The value in the accumulator is OR’d
with 36476A38 using the Or Double instruction. The value in the accumulator is output to
V2010 and V2011 using the Out Double instruction.

A aaa
ORD

JMP
K

OR 36476A38

Handheld Programmer Keystrokes

LDD
V2000

X1

Load the value in V2000 and
V2001 into accumulator

ORD
K36476A38

OR the value in the
accumulator with
 the constant value
36476A38

OUTD
V2010

Copy the value in the
accumulator to V2010 and
V2011

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

0 1 1 0 1 0 1 0 0 1 1 1 1 0 1 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

2 8 7 A

0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1

0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

Acc.

V2010

6 A 7 A

5 4 7 E

V2011

7 6 7 F

0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

DirectSOFT

0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1

STR
$

SHFT ANDST
L

3
D

SHFT

OUT
GX

3
D

SHFT 3
D

SHFT 3
D

OR
Q

8
I

3
DSHFTSHFT 0

A
3

D
6

G
4

E
7

H
6

G ENT

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

V2000V2001

Discrete Bit Flags Description
SP63 Will be ON if the result in the accumulator is zero
SP70 Will be ON if the result in the accumulator is negative

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)
Constant K 0–FFFFFFFF

DL105 User Manual, 3rd Ed. Rev. G 5-59

Chapter 5: Standard RLL Instructions

Exclusive Or (XOR)
The Exclusive Or instruction is a 16-bit instruction that
performs an exclusive OR of the value in the lower 16 bits of
the accumulator and a specified V-memory location (Aaaa). The
result resides in the accumulator. The discrete status flag indicates
if the result of the XOR is zero.

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, the value in V2000 will be loaded into the accumulator
using the Load instruction. The value in the accumulator is exclusive OR’d with V2006 using
the Exclusive Or instruction. The value in the lower 16 bits of the accumulator are output to
V2010 using the Out instruction.

XOR
A aaa

XOR (V2006)

Handheld Programmer Keystrokes

LD
V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

XOR
V2006

XOR the value in the
accumulator with
 the value in V2006

OUT
V2010

Copy the lower 16 bits of the
accumulator to V2010

0 0 1 0 10 0 0 0 1 1 1 1 0 1 0

0 1 0 0 1 1 1 0 0 1 0 0 0 0 1 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

V2000
2 8 7 A

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The upper 16 bits of the accumulator
will be set to 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

0 0 1 0 0 1 0 0 0 1 1 1 1 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Acc.

6A38

V2010

4 E 4 2

DirectSOFT

0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

STR
$

1
B ENT

SHFT ANDST
L

3
D SHFT AND

V
2

C
0

A
0

A
0

A ENT

SHFT AND
V

2
C

0
A

0
A ENT6

G

OUT
GX SHFT AND

V
2

C
0

A
1

B
0

A ENT

OR
QSHFT SHFTSET

X

Discrete Bit Flags Description
SP63 Will be ON if the result in the accumulator is zero

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)

DL105 User Manual, 3rd Ed. Rev. G5-60

Chapter 5: Standard RLL Instructions

Exclusive OR Double (XORD)
The Exclusive OR Double is a 32-bit instruction
that performs an exclusive OR of the value in the
accumulator and the value (Kaaa), which is an
8-digit (max) constant. The result resides in the
accumulator. Discrete status flags indicate if the result
of the Exclusive Or Double is zero or a negative number
(the most significant bit is on).

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded
into the accumulator using the Load Double instruction. The value in the accumulator is
exclusively OR’d with 36476A38 using the Exclusive Or Double instruction. The value in the
accumulator is output to V2010 and V2011 using the Out Double instruction.

K aaa
XORD

JMP
KSHFTSHFT 3

D
OR

Q

XORD 36476A38

Handheld Programmer Keystrokes

LDD

V2000

X1

Load the value in V2000 and
V2001 into the accumulator

XORD
K36476A38

XORD the value in the
accumulator with
 the constant value
36476A38

OUTD
V2010

Copy the value in the
accumulator to V2010
and V2011

0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

V2000
2 8 7 A

0 1 1 0 0 0 1 0 0 0 1 1 1 0 0 1

0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

Acc.

V2010

4 2 4 2

V2001

?
5 4 7 E

V2011

6 2 3 9

0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

DirectSOFT

0 1 1 0 1 0 1 0 0 0 1 1 1 0 0 00 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1

STR
$

SHFT ANDST
L

3
D

3
D

SHFT SET
X

OUT
GX SHFT 3

D

3
D

6
G

4
E

8
I

3
DSHFTSHFT 0

A
7

H
6

G ENT

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

Discrete Bit Flags Description
SP63 Will be ON if the result in the accumulator is zero
SP70 Will be ON if the result in the accumulator is negative

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)
Constant K 0–FFFFFFFF

DL105 User Manual, 3rd Ed. Rev. G 5-61

Chapter 5: Standard RLL Instructions

Compare (CMP)
The compare instruction is a 16-bit instruction that
compares the value in the lower 16 bits of the accumulator
with the value in a specified V-memory location (Aaaa).
The corresponding status flag will be turned on indicating
the result of the comparison.

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, the constant 4526 will be loaded into the lower 16
bits of the accumulator using the Load instruction. The value in the accumulator is compared
with the value in V2000 using the Compare instruction. The corresponding discrete status
flag will be turned on indicating the result of the comparison. In this example, if the value in
the accumulator is less than the value specified in the Compare instruction, SP60 will turn on,
energizing contact C30.

CMP
A aaa

Discrete Bit Flags Description
SP60 ON when the value in the accumulator is less than the instruction value.
SP61 ON when the value in the accumulator is equal to the instruction value.
SP62 ON when the value in the accumulator is greater than the instruction value.

Handheld Programmer Keystrokes

V2000

Acc.

CONSTANT
4 5 2 6 ?

8 9 4 5

0 0 0 0 4 5 2 64 5 2 6 ?

LD

Compare the value in the
accumulator with the value
in V2000

Load the constant value
4526 into the lower 16 bits of
the accumulator

K4526

CMP

X1

V2000

Compared
with

SP60 C30

DirectSOFT

The unused accumulator
bits are set to zero

STR
$

SHFT ANDST
L

3
D SHFT JMP

K
4

E
5

F
2

C
6

G ENT

SHFT 2
C

ORST
M

CV
P

STR
$ SHFT ENTSTRN

SP
6

G
0

A

OUT
GX SHFT 2

C
3

D
0

A ENT

1
B ENT

2
C

0
A

0
A

0
A ENTSHFT

OUT

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)

DL105 User Manual, 3rd Ed. Rev. G5-62

Chapter 5: Standard RLL Instructions

Compare Double (CMPD)
The Compare Double instruction is a 32–bit instruction that
compares the value in the accumulator with the value (Aaaa),
which is either two consecutive V-memory locations or an 8–digit
(max) constant. The corresponding status flag will be turned on
indicating the result of the comparison.

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded into
the accumulator using the Load Double instruction. The value in the accumulator is compared
with the value in V2010 and V2011 using the CMPD instruction. The corresponding discrete
status flag will be turned on indicating the result of the comparison. In this example, if the
value in the accumulator is less than the value specified in the Compare instruction, SP60 will
turn on, energizing contact C30.

Handheld Programmer Keystrokes

LDD

Compare the value in the
accumulator with the value
in V2010 and V2011

Load the value in V2000 and
V2001 into the accumulator

V2000

CMPD

X1

V2010

Compared
with

SP60 C30

V2010

Acc.

V2000

4 5 2 6 7 7 ? 7 2 9 9

V2001
4 5 2 6 7 2 9 9

V2011

6 7 3 9 5 0 2 6

DirectSOFT

STR
$

SHFT ANDST
L

3
D

SHFT 2
C

ORST
M

CV
P

STR
$ SHFT ENTSTRN

SP
6

G
0

A

OUT
GX SHFT 2

C
3

D
0

A ENT

3
D

3
D

1
B ENT

ENT

2
C

0
A

0
A ENT

2
C

0
A

0
A

0
A

1
BSHFT

OUT

CMPD
A aaa

Discrete Bit Flags Description
SP60 ON when the value in the accumulator is less than the instruction value
SP61 ON when the value in the accumulator is equal to the instruction value
SP62 ON when the value in the accumulator is greater than the instruction value

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)
Constant K 0–FFFFFFFF

DL105 User Manual, 3rd Ed. Rev. G 5-63

Chapter 5: Standard RLL Instructions

Math Instructions
Add (ADD)

Add is a 16-bit instruction that adds a BCD value in the
accumulator with a BCD value in a V-memory location (Aaaa).
(You cannot use a constant “K” as the BCD value in the box.)
The result resides in the accumulator.

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, the value in V2000 will be loaded into the accumulator
using the Load instruction. The value in the lower 16 bits of the accumulator are added to the
value in V2006 using the Add instruction. The value in the accumulator is copied to V2010
using the Out instruction.

ADD
A aaa

DirectSOFT

Handheld Programmer Keystrokes

LD
V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

ADD
V2006

Add the value in the lower
16 bits of the accumulator
with the value in V2006

OUT
V2010

Copy the value in the lower
16 bits of the accumulator to
V2010

V2010

V2000
4 9 3 5

7 4 3 5

0 0 0 0 4 9 3 5

+ 2 5 0 0

Acc. 7 4 3 5

(V2006)

(Accumulator)

The unused accumulator
bits are set to zero

SHFT ANDST
L

3
D

STR
$

SHFT 0
A

3
D

3
D

OUT
GX SHFT AND

V
2

C
0

A
1

B
0

A ENT

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

0
A ENT6

G

Discrete Bit Flags Description
SP63 ON when the result of the instruction causes the value in the accumulator to be zero
SP66 ON when the 16-bit addition instruction results in a carry
SP67 ON when the 32-bit addition instruction results in a carry
SP70 ON anytime the value in the accumulator is negative
SP75 ON when a BCD instruction is executed and a NON-BCD number is encountered

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)

DL105 User Manual, 3rd Ed. Rev. G5-64

Chapter 5: Standard RLL Instructions

Add Double (ADDD)
Add Double is a 32-bit instruction that adds the BCD value
in the accumulator with a BCD value (Aaaa), which is either
two consecutive V-memory locations or an 8–digit (max)
BCD constant. The result resides in the accumulator.

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded into
the accumulator using the Load Double instruction. The value in the accumulator is added
with the value in V2006 and V2007 using the Add Double instruction. The value in the
accumulator is copied to V2010 and V2011 using the Out Double instruction.

ADDD
A aaa

6 7 3 9 5 0 2 6

DirectSOFT

Handheld Programmer Keystrokes

LDD
V2000

X1

Load the value in V2000 and
V2001 into the accumulator

ADDD
V2006

Add the value in the
accumulator with the value
in V2006 and V2007

OUTD
V2010

Copy the value in the
accumulator to V2010 and
V2011

V2010

V2000

V2001
6 7 3 9 5 0 2 6

V2011

8 7 3 9 9 0 7 2

(V2006 and V2007)

(Accumulator)

2 0 0 0 4 0 4 6+

8 7 3 9 9 0 7 2Acc.

STR
$

1
B

SHFT 0
A

3
D

3
D

SHFT ANDST
L

3
D

3
D

3
D

OUT
GX SHFT 3

D
AND

V
2

C
0

A
1

B
0

A ENTSHFT

ENT

2
C

0
A

0
A ENT6

G

2
C

0
A

0
A

0
A ENT

Discrete Bit Flags Description
SP63 ON when the result of the instruction causes the value in the accumulator to be zero
SP66 ON when the 16-bit addition instruction results in a carry
SP67 ON when the 32-bit addition instruction results in a carry
SP70 ON anytime the value in the accumulator is negative
SP75 ON when a BCD instruction is executed and a NON-BCD number is encountered

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)
Constant K 0–99999999

DL105 User Manual, 3rd Ed. Rev. G 5-65

Chapter 5: Standard RLL Instructions

Subtract (SUB)
Subtract is a 16-bit instruction that subtracts the BCD
value (Aaaa) in a V-memory location from the BCD value
in the lower 16 bits of the accumulator. The result resides
in the accumulator.

NOTE: A constant (K) cannot be used for the BCD value.
Status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, the value in V2000 will be loaded into the
accumulator using the Load instruction. The value in V2006 is subtracted from the value
in the accumulator using the Subtract instruction. The value in the accumulator is copied to
V2010 using the Out instruction.

S
tandard R

LL
Instructions

5–91

SUB
A aaa

Discrete Bit Flags Description
SP63 ON when the result of the instruction causes the value in the accumulator to be zero
SP64 ON when the 16 bit addition instruction results in a carry
SP65 ON when the 32 bit addition instruction results in a carry
SP70 ON anytime the value in the accumulator is negative
SP75 ON when a BCD instruction is executed and a NON-BCD number is encountered

DirectSOFT

Handheld Programmer Keystrokes

LD
V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

SUB
V2006

Subtract the value in V2006
from the value in the lower
16 bits of the accumulator

OUT
V2010

Copy the value in the lower
16 bits of the accumulator to
V2010

V2010

0 2

1 (V2006)

(Accumulator)

2

0

0

V2000
4 7 5

8 8 3

0 0 0 4 7 5

5 9 2

Acc. 8 8 3

The unused accumulator
bits are set to zero

SHFT ANDST
L

3
D

STR
$

SHFT SHFT AND
V

2
C

0
A

0
A ENT6

G

OUT
GX SHFT AND

V
2

C
0

A
1

B
0

A ENT

RST
S

ISG
U

1
B

1
B ENT

2
C

0
A

0
A

0
A ENT

_

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)

DL105 User Manual, 3rd Ed. Rev. G5-66

Chapter 5: Standard RLL Instructions

Subtract Double (SUBD)
Subtract Double is a 32-bit instruction that subtracts the
BCD value (Aaaa), which is either two consecutive V-memory
locations or an 8-digit (max) constant, from the BCD value in
the accumulator. The result resides in the accumulator.

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded
into the accumulator using the Load Double instruction. The value in V2006 and V2007
is subtracted from the value in the accumulator. The value in the accumulator is copied to
V2010 and V2011 using the Out Double instruction.

Discrete Bit Flags Description
SP63 ON when the result of the instruction causes the value in the accumulator to be zero
SP64 ON when the 16 bit subtraction instruction results in a borrow
SP65 ON when the 32 bit subtraction instruction results in a borrow
SP70 ON anytime the value in the accumulator is negative
SP75 ON when a BCD instruction is executed and a NON-BCD number was encountered

SUBD
A aaa

DirectSOFT

Handheld Programmer Keystrokes

LDD
V2000

X1

Load the value in V2000 and
V2001 into the accumulator

SUBD
V2006

The value in V2006 and V2007
is subtracted from the value in
the accumulator

OUTD
V2010

Copy the value in the
accumulator to V2010 and
V2011

0 0 3 9 0 8 9 9

0 1 0 6 3 2 7 4

0 1 0 6 3 2 7 4

V2010

V2000V2001

V2011

0 0 3 9 0 8 9 9

6 7 2 3 7 5

ACC.

STR
$

SHFT

SHFT ANDST
L

3
D

3
D

3
D

OUT
GX SHFT 3

D

RST
S

ISG
U

1
B

1
B ENT

2
C

0
A

0
A ENT6

G

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

SHFT

_

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)
Constant K 0–99999999

DL105 User Manual, 3rd Ed. Rev. G 5-67

Chapter 5: Standard RLL Instructions

Multiply (MUL)
Multiply is a 16-bit instruction that multiplies the BCD
value (Aaaa), which is either a V-memory location or a 4–
digit (max) constant, by the BCD value in the lower 16
bits of the accumulator The result can be up to 8 digits and
resides in the accumulator.

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, the value in V2000 will be loaded into the accumulator
using the Load instruction. The value in V2006 is multiplied by the value in the accumulator.
The value in the accumulator is copied to V2010 and V2011 using the Out Double instruction.

MUL
A aaa

Discrete Bit Flags Description
SP63 ON when the result of the instruction causes the value in the accumulator to be zero.
SP70 ON anytime the value in the accumulator is negative.
SP75 ON when a BCD instruction is executed and a Non-BCD number was encountered.

DirectSOFT

Handheld Programmer Keystrokes

LD
V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

MUL
V2006

The value in V2006 is
multiplied by the value in the
accumulator

OUTD
V2010

Copy the value in the
accumulator to V2010 and
V2011

0 0 0 2 5 0 0 0

0

X

0 0 0 0 1 0 0 0

1

V2000

0

0 0 0 2 5 0 0 0

2 5

The unused accumulator
bits are set to zero

Acc.

STR
$

SHFT ANDST
L

3
D

SHFT ORST
M

ISG
U

ANDST
L

OUT
GX SHFT 3

D

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

0
A ENT6

G

2
C

0
A

1
B

0
A ENT

0

V2011

(Accumulator)
(V2006)

V2010

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)
Constant K 0–9999

DL105 User Manual, 3rd Ed. Rev. G5-68

Chapter 5: Standard RLL Instructions

Divide (DIV)
Divide is a 16-bit instruction that divides the BCD value
in the accumulator by a BCD value (Aaaa), which is either
a V-memory location or a 4-digit (max) constant. The first
part of the quotient resides in the accumulator, and the
remainder resides in the first stack location.

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, the value in V2000 will be loaded into the accumulator
using the Load instruction. The value in the accumulator will be divided by the value in V2006
using the Divide instruction. The value in the accumulator is copied to V2010 using the Out
instruction.

DIV
A aaa

Discrete Bit Flags Description
SP53 ON when the value of the operand is larger than the accumulator can work with
SP63 ON when the result of the instruction causes the value in the accumulator to be zero
SP70 ON anytime the value in the accumulator is negative
SP75 ON when a BCD instruction is executed and a NON-BCD number was encountered

DirectSOFT

Handheld Programmer Keystrokes

LD
V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

DIV
V2006

The value in the
accumulator is divided by
the value in V2006

OUT
V2010

Copy the value in the lower
16 bits of the accumulator to
V2010

V2010

5

(V2006)

(Accumulator)0

5
V2000
0 0 0

1 0 0

0 0 0 0 0 0

5 0

Acc. 1 0 0

The unused accumulator
bits are set to zero

0 0 00 0 0 0 0

First stack location contains
 the remainder

STR
$

SHFT ANDST
L

3
D

SHFT 3
D

8
I

AND
V

OUT
GX SHFT AND

V
2

C
0

A
1

B
0

A ENT

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

0
A ENT6

G

÷

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)
Constant K 0–9999

DL105 User Manual, 3rd Ed. Rev. G 5-69

Chapter 5: Standard RLL Instructions

Increment Binary (INCB)
The Increment Binary instruction increments a binary value in
a specified V-memory location by “1” each time the instruction
is executed.

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when C5 is on, the binary value in V2000 is increased by 1.

Decrement Binary (DECB)

The Decrement Binary instruction decrements a binary
value in a specified V-memory location by “1” each time the
instruction is executed.

NOTE: The status flags are only valid until another instruction that uses the same flag is executed.

In the following example, when C5 is on, the value in V2000 is decreased by 1.

Discrete Bit Flags Description
SP63 ON when the result of the instruction causes the value in the accumulator to be zero

Handheld Programmer KeystrokesDirectSOFT

C5 INCB
V2000

Increment the binary value
in V2000 by “1”

4 A 3 C

4 A 3 D

STR
$

2
C

5
FSHFT ENT

SHFT 8
I

TMR
N

2
C

1
B

2
C

0
A

0
A

0
A ENT

V2000

V2000

INCB
A aaa

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)

A aaa
DECB

Handheld Programmer KeystrokesDirectSOFT

C5 DECB
V2000

Decrement the binary value
in V2000 by “1”

V2000

4 A 3 C?

V2000

4 A 3 B?

STR
$

2
C

5
FSHFT ENT

SHFT 2
C

3
D

4
E

1
B

2
C

0
A

0
A

0
A ENT

CV
P

3
DSHFT

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)

Discrete Bit Flags Description
SP63 ON when the result of the instruction causes the value in the accumulator to be zero

DL105 User Manual, 3rd Ed. Rev. G5-70

Chapter 5: Standard RLL Instructions

Bit Operation Instructions
Shift Left (SHFL)

Shift Left is a 32-bit instruction that shifts the bits in the
accumulator a specified number (Aaaa) of places to the left.
The vacant positions are filled with zeros, and the bits shifted
out of the accumulator are lost.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded into
the accumulator using the Load Double instruction. The bit pattern in the accumulator is
shifted 10 bits to the left using the Shift Left instruction. The value in the accumulator is
copied to V2010 and V2011 using the Out Double instruction.

SHFL
A aaa

S
ta

nd
ar

d
R

LL
In

st
ru

ct
io

ns

ENT

Handheld Programmer Keystrokes

Direct SOFT

LDD

V2000

X1

Load the value in V2000 and
V2001 into the accumulator

SHFL

K10

The bit pattern in the
accumulator is shifted 10 bit
positions to the left

OUTD

V2010

Copy the value in the
accumulator to V2010 and
V2011

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1

V2010

0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

4 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

V2011

C1 4

6 7 0 5 3 1 0 1

Shifted out of the
 accumulator

V2000V2001

STR
$

SHFT
ANDST
L

3
D

3
D

SHFT
RST

S
7

H
5

F
ANDST
L

OUT
GX SHFT

3
D

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

SHFT

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 10 0 0 1 0 1 000

004

0
AB

1

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)
Constant K 0–32

DL105 User Manual, 3rd Ed. Rev. G 5-71

Chapter 5: Standard RLL Instructions

Shift Right (SHFR)
Shift Right is a 32-bit instruction that shifts the bits in the
accumulator a specified number (Aaaa) of places to the right.
The vacant positions are filled with zeros, and the bits shifted
out of the accumulator are lost.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded into
the accumulator using the Load Double instruction. The bit pattern in the accumulator is
shifted 10 bits to the right using the Shift Right instruction. The value in the accumulator is
copied to V2010 and V2011 using the Out Double instruction.

SHFR
A aaa

S
tandard R

LL
Instructions

Handheld Programmer Keystrokes

Direct SOFT

LDD

V2000

X1

Load the value in V2000 and
V2001 into the accumulator

SHFR

K10

The bit pattern in the
accumulator is shifted 10 bit
positions to the right

OUTD

V2010

Copy the value in the
accumulator to V2010 and
V2011

0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1

V2010

0 1 0 0 1 1 0 00 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

C 1 4

0 0 0 0 11 00 11 1 0 0 0 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 1 1 0 0 1 1 1 0 0 0 0 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

Acc.

V2011

0 0 9 C

Constant 6 7 0 5 3 1 0 1

Shifted out of the
 accumulator

V2001 V2000

STR
$

SHFT
ANDST
L

3
D

3
D

SHFT
RST

S
7

H
5

F ENT

OUT
GX SHFT

3
D

ORN
RSHFT

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

0 0 0 0 0 0

1

0

0
A

1
B

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-29)
Constant K 0–32

DL105 User Manual, 3rd Ed. Rev. G5-72

Chapter 5: Standard RLL Instructions

Encode (ENCO)
The Encode instruction encodes the bit position in the
accumulator having a value of 1, and returns the appropriate
binary representation. If the most significant bit is set to
1 (Bit 31), the Encode instruction would place the value
HEX 1F (decimal 31) in the accumulator. If the value to be
encoded is 0000 or 0001, the instruction will place a zero in the accumulator. If the value to
be encoded has more than one bit position set to a “1”, the least significant “1” will be encoded
and SP53 will be set on.

NOTE: The status flags are only valid until another instruction that uses the same flags is executed.

In the following example, when X1 is on, The value in V2000 is loaded into the accumulator
using the Load instruction. The bit position set to a “1” in the accumulator is encoded to the
corresponding 5-bit binary value using the Encode instruction. The value in the lower 16 bits
of the accumulator is copied to V2010 using the Out instruction.

ENCO

Discrete Bit Flags Description
SP53 On when the value of the operand is larger than the accumulator can work with

Handheld Programmer Keystrokes

DirectSOFT

LD
V2000

X1

Load the value in V2000 into
the lower 16 bits of the
accumulator

ENCO

Encode the bit position set
to “1” in the accumulator to a
5 bit binary value

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

V2000
1 0 0 0

Bit postion 12 is
converted
to binary

Copy the value in the lower 16 bits
of the accumulator to V2010

OUT
V2010

0 0 0 C

Binary value
for 12.

STR
$

1
B ENT

SHFT

OUT
GX SHFT AND

V
2

C
0

A
1

B
0

A ENT

4
E

TMR
N

2
C

INST#
O ENT

SHFT ANDST
L

3
D

2
C

0
A

0
A

0
A ENT

V2010

DL105 User Manual, 3rd Ed. Rev. G 5-73

Chapter 5: Standard RLL Instructions

Decode (DECO)
The Decode instruction decodes a 5-bit binary value of
0 to 31 (0 to 1F HEX) in the accumulator by setting the
appropriate bit position to a 1. If the accumulator contains
the value F (HEX), bit 15 will be set in the accumulator. If
the value to be decoded is greater than 31, the number is
divided by 32 until the value is less than 32 and then the value is decoded.

In the following example, when X1 is on, the value formed by discrete locations X10–X14 is
loaded into the accumulator using the Load Formatted instruction. The 5-bit binary pattern
in the accumulator is decoded by setting the corresponding bit position to a “1” using the
Decode instruction.

DECO

Handheld Programmer Keystrokes

DirectSOFT

LDF X10
K5

X1

Load the value in
represented by discrete
locations X10–X14 into the
accumulator

DECO

Decode the five bit binary
pattern in the accumulator
and set the corresponding
bit position to a “1”

OFF

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

The binary vlaue
is converted to
bit position 11.

STR
$ ENT

SHFT ANDST
L

3
D

5
F

1
B

1
B

0
A ENT5

F

SHFT 2
C

INST#
O ENT3

D
4

E

ON OFF ON ON
X14 X13 X12 X11 X10

DL105 User Manual, 3rd Ed. Rev. G5-74

Chapter 5: Standard RLL Instructions

Number Conversion Instructions (Accumulator)
Binary (BIN)

The Binary instruction converts a BCD value in the
accumulator to the equivalent binary value. The result resides
in the accumulator.

In the following example, when X1 is on, the value in V2000
and V2001 is loaded into the accumulator using the Load Double instruction. The BCD value
in the accumulator is converted to the binary (HEX) equivalent using the BIN instruction.
The binary value in the accumulator is copied to V2010 and V2011 using the Out Double
instruction. (The Handheld Programmer will display the binary value in V2010 and V2011
as a HEX value.)

BIN

STR
$

0
A

OUT
GX SHFT 3

D
2

C
0

A
1

B ENT

0 0 0 0 6 F 7 1

V2010V2011

Handheld Programmer Keystrokes

LDD
V2000

X1

BIN

1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 18 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

Acc.

0 0 0 2 8 5 2 9

V2000V2001

0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

12481
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

5
2
4
2
8
8

1
0
4
8
5
7
6

2
0
9
7
1
5
2

4
1
9
4
3
0
4

8
3
8
8
6
0
8

1
6
7
7
7
2
1
6

3
3
5
5
4
4
3
2

6
7
1
0
8
8
6
4

1
3
4
2
1
7
7
2
8

2
6
8
4
3
5
4
5
6

5
3
6
8
7
0
9
1
2

1
0
7
3
7
4
1
8
2
4

2
1
4
7
4
4
8
3
6
4
8

OUTD
V2010

28529 = 16384 + 8192 + 2048 + 1024 + 512 + 256 + 64 + 32 + 16 + 1

1
B ENT

SHFT ANDST
L

3
D

3
D

2
C

0
A

0
A

0
A ENT

SHFT 1
B

8
I

TMR
N ENT

Copy the binary data in the
accumulator to V2010 and V2011

Convert the BCD value in
the accumulator to the
binary equivalent value

Load the value in V2000 and
V2001 into the accumulator

BCD Value

Binary Equivalent Value

The Binary (HEX)
value copied to
V2010

DirectSOFT

DL105 User Manual, 3rd Ed. Rev. G 5-75

Chapter 5: Standard RLL Instructions

Binary Coded Decimal (BCD)
The Binary Coded Decimal instruction converts a binary value
in the accumulator to the equivalent BCD value. The result
resides in the accumulator.

In the following example, when X1 is on, the binary (HEX)
value in V2000 and V2001 is loaded into the accumulator using the Load Double instruction.
The binary value in the accumulator is converted to the BCD equivalent value using the BCD
instruction. The BCD value in the accumulator is copied to V2010 and V2011 using the Out
Double instruction.

BCD

3
D

Handheld Programmer Keystrokes

LDD
V2000

X1

Load the value in V2000 and
V2001 into the accumulator

BCD

Convert the binary value in
the accumulator to the BCD
equivalent value

0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

0 0 0 0 6 F 7 1

V2000V2001

BCD Equivalent Value

Binary Value

1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0Acc.

12481
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

5
2
4
2
8
8

1
0
4
8
5
7
6

2
0
9
7
1
5
2

4
1
9
4
3
0
4

8
3
8
8
6
0
8

1
6
7
7
7
2
1
6

3
3
5
5
4
4
3
2

6
7
1
0
8
8
6
4

1
3
4
2
1
7
7
2
8

2
6
8
4
3
5
4
5
6

5
3
6
8
7
0
9
1
2

1
0
7
3
7
4
1
8
2
4

2
1
4
7
4
4
8
3
6
4
8

Copy the BCD value in the
accumulator to V2010 and V2011

OUTD
V2010

The BCD value
copied to
V2010 and V2011

0 0 0 2 8 5 2 9

V2010V2011

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 18 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

16384 + 8192 + 2048 + 1024 + 512 + 256 + 64 + 32 + 16 + 1 = 28529

STR
$

1
B ENT

SHFT ANDST
L

3
D

3
D

2
C

0
A

0
A

0
A ENT

SHFT 1
B ENT

OUT
GX SHFT

2
C

0
A

1
B

0
A ENT

2
C

3
D

DirectSOFT

DL105 User Manual, 3rd Ed. Rev. G5-76

Chapter 5: Standard RLL Instructions

Invert (INV)
The Invert instruction inverts or takes the one’s complement
of the 32-bit value in the accumulator. The result resides in
the accumulator.

In the following example, when X1 is on, the value in V2000 and V2001 will be loaded into
the accumulator using the Load Double instruction. The value in the accumulator is inverted
using the Invert instruction. The value in the accumulator is copied to V2010 and V2011
using the Out Double instruction.

INV

Handheld Programmer Keystrokes

DirectSOFT

LDD
V2000

X1

Load the value in V2000 and
V2001 into the accumulator

INV

Invert the binary bit pattern
in the accumulator

OUTD
V2010

Copy the value in the
accumulator to V2010 and
V2011

0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

0 4 0 5 0 2 5 0 0 2 5 0

V2000V2001

V2010V2011

1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 11 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Acc.

F B F A F D A F

STR
$

SHFT ANDST
L

3
D

3
D

SHFT ENT

OUT
GX SHFT 3

D

8
I

TMR
N

AND
V

1
B ENT

2
C

0
A

0
A

0
A ENT

2
C

0
A

1
B

0
A ENT

DL105 User Manual, 3rd Ed. Rev. G 5-77

Chapter 5: Standard RLL Instructions

Table Instructions
Move (MOV)

The Move instruction moves the values from a V-memory
table to another V-memory table the same length. The
function parameters are loaded into the first level of the
accumulator stack and the accumulator by two additional
instructions. Listed below are the steps necessary to program
the Move function.

Step 1: Load the number of V-memory locations to be moved into the first level of the
accumulator stack. This parameter is a HEX value (KFFF max, 7777 octal).

Step 2: Load the starting V-memory location for the locations to be moved into the
accumulator. This parameter must be a HEX value.

Step 3: Insert the MOVE instruction which specifies starting V-memory location (Vaaa)
for the destination table.

Helpful hint: — For parameters that require HEX values when referencing memory locations,
the LDA instruction can be used to convert an octal address to the HEX equivalent and load
the value into the accumulator.

In the following example, when X1 is on, the constant value (K6) is loaded into the accumulator
using the Load instruction. This value specifies the length of the table and is placed in the first
stack location after the Load Address instruction is executed. The octal address 2000 (V2000),
the starting location for the source table is loaded into the accumulator. The destination table
location (V2030) is specified in the Move instruction.

V aaa
MOV

S
ta

nd
ar

d
R

LL
In

st
ru

ct
io

ns

Handheld Programmer Keystrokes

LD

K6

X1
Load the constant value 6
(HEX) into the lower 16 bits
of the accumulator

LDA

O 2000

Convert octal 2000 to HEX
400 and load the value into
the accumulator

MOV

V2030

Copy the specified table
locations to a table
beginning at location V2030

V20300 1 2 3

V20310 5 0 0

V20329 9 9 9

V20333 0 7 4

V20348 9 8 9

V20351 0 1 0

V2036X X X X

V2037X X X X

V2026X X X X

V2027X X X X

V20000 1 2 3

V20010 5 0 0

V20029 9 9 9

V20033 0 7 4

V20048 9 8 9

V20051 0 1 0

V2006X X X X

V2007X X X X

V1776X X X X

V1777X X X X

STR
$

SHFT
ANDST
L

3
D SHFT

JMP
K

6
G ENT

SHFT
ANDST
L

3
D

0
A

2
C

0
A

0
A

0
A ENT

SHFT
ORST
M

INST#
O

1
B ENT

2
C

0
A

0
A ENT

3
D

AND
V

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-28)

DL105 User Manual, 3rd Ed. Rev. G5-78

Chapter 5: Standard RLL Instructions

Move Memory Cartridge (MOVMC)

Load Label (LDLBL)
The Move Memory Cartridge instruction is used to copy
data between V-memory and program ladder memory.
The Load Label instruction is only used with the MOVMC
instruction when copying data from program ladder memory
to V-memory.

To copy data between V-memory and program ladder
memory, the function parameters are loaded into the first two
levels of the accumulator stack and the accumulator by two
additional instructions. Listed below are the steps necessary to
program the Move Memory Cartridge and Load Label functions.

Step 1: Load the number of words to be copied into the second level of the accumulator stack.

Step 2: Load the offset for the data label area in the program ladder memory and the beginning of the
V-memory block into the first level of the accumulator stack.

Step 3: Load the source data label (LDLBL Kaaa) into the accumulator when copying data from
ladder memory to V-memory. Load the source address into the accumulator when copying
data from V-memory to ladder memory. This is where the value will be copied from. If the
source address is a V-memory location, the value must be entered in HEX.

Step 4: Insert the MOVMC instruction which specifies destination (Aaaa). This is where the value
will be copied to.

WARNING: The offset for this usage of the instruction starts at 0, but may be any number that does not
result in data outside of the source data area being copied into the destination table. When an offset
is outside of the source information boundaries, then unknown data values will be transferred into the
destination table.

V aaa
MOVMC

LDLBL
aaaK

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-28)

DL105 User Manual, 3rd Ed. Rev. G 5-79

Chapter 5: Standard RLL Instructions

Copy Data From a Data Label Area to V-Memory
In the following example, data is copied from a Data Label Area to V-memory. When X1 is
on, the constant value (K4) is loaded into the accumulator using the Load instruction. This
value specifies the length of the table and is placed in the second stack location after the next
Load and Load Label (LDLBL) instructions are executed. The constant value (K0) is loaded
into the accumulator using the Load instruction. This value specifies the offset for the source
and destination data, and is placed in the first stack location after the LDLBL instruction is
executed. The source address where data is being copied from is loaded into the accumulator
using the LDLBL instruction. The MOVMC instruction specifies the destination starting
location and executes the copying of data from the Data Label Area to V-memory.

WARNING: The offset for this usage of the instruction starts at 0, but may be any number that does not
result in data outside of the source data area being copied into the destination table. When an offset
is outside of the source information boundaries, then unknown data values will be transferred into the
destination table.

S
ta

nd
ar

d
R

LL
In

st
ru

ct
io

ns

1 2 3 4
C O N

4 5 3 2
C O N

6 1 5 1
C O N

8 8 4 5
C O N

K
N

K
N

K
N

K
N

DirectSOFT

Handheld Programmer Keystrokes

LD
K4

X1

Load the value 4 into the
accumulator specifying the
number of locations to be
copied.

LD
K0

Load the value 0 into the
accumulator specifying the
offset for source and
destination locations

LDLBL
K1

Load the value 1 into the
accumulator specifying the
Data Label Area K1 as the
starting address of the data
to be copied.

V2001

V20026 1 5 1

V20038 8 4 5

V2004X X X X

V1777

V20001 2 3 4

Data Label Area
Programmed
After the END
Instruction

MOVMC
V2000

V2000 is the destination
starting address for the data
to be copied.

DLBL K1

STR
$

SHFT ANDST
L

3
D SHFT JMP

K ENT

SHFT ANDST
L

3
D

ANDST
L

1
B

ANDST
L

SHFT ORST
M

AND
V

INST#
O

ORST
M

2
C

1
B ENT

ENT1
B

2
C

0
A

0
A

0
A ENT

SHFT ANDST
L

3
D SHFT JMP

K
0

A ENT

4
E

X X X X

4 5 3 2

DL105 User Manual, 3rd Ed. Rev. G5-80

Chapter 5: Standard RLL Instructions

CPU Control Instructions
No Operation (NOP)

The No Operation is an empty (not programmed) memory location.

End (END)
The End instruction marks the termination point of the normal program
scan. An End instruction is required at the end of the main program
body. If the End instruction is omitted, an error will occur and the CPU
will not enter the Run Mode. Data labels, subroutines and interrupt
routines are placed after the End instruction. The End instruction is not
conditional; therefore, no input contact is allowed.

Stop (STOP)
The Stop instruction changes the operational mode of the CPU from
Run to Program (Stop) mode. This instruction is typically used to stop
PLC operation in a shutdown condition such as an I/O module failure.

In the following example, when SP45 comes on indicating an I/O module failure, the CPU will
stop operation and switch to the program mode.

NOP

DirectSOFT Handheld Programmer Keystrokes

NOP
SHFT TMR

N
INST#
O

CV
P ENT

END

DirectSOFT Handheld Programmer Keystrokes

END
SHFT 4

E
TMR

N
3

D ENT

STOP

DirectSOFT Handheld Programmer Keystrokes

STOP

SP45
STR

$ SHFT ENTSTRN
SP

4
E

SHFT RST
S

MLR
T

INST#
O

CV
P ENTSHFT

5
F

SP45 will turn on
if there is an I/O
module failure.

DL105 User Manual, 3rd Ed. Rev. G 5-81

Chapter 5: Standard RLL Instructions

Program Control Instructions
Master Line Set (MLS)

The Master Line Set instruction allows the program to control sections
of ladder logic by forming a new power rail controlled by the main left
power rail. The main left rail is always master line 0. When an MLS K1
instruction is used, a new power rail is created at level 1. Master Line Sets
and Master Line Resets can be used to nest power rails up to seven levels
deep. Note that unlike stages in RLLPLUS, the logic within the master
control relays is still scanned and updated even though it will not function
if the MLS is off.

Master Line Reset (MLR)
The Master Line Reset instruction marks the end of control for the
corresponding MLS instruction. The MLR reference is one less than the
corresponding MLS.

Understanding Master Control Relays
The Master Line Set (MLS) and Master Line Reset (MLR) instructions allow you to quickly
enable (or disable) sections of the RLL program. This provides program control flexibility.
The following example shows how the MLS and MLR instructions operate by creating a sub
power rail for control logic.

K aaa

MLS

K aaa

MLR

X0

X1

X2

OUT
Y7

X3

MLS

X10

K1

K2

K0

K1

MLS

OUT

MLR

MLR

OUT

Y10

Y11

DirectSOFT

When contact X0 is ON, logic under the first MLS
will be executed.

When contact X0 and X2 are ON, logic under the
second MLS will be executed.

The MLR instructions note the end of the Master
Control area.

Operand Data Type DL130 Range
A aaa

Constant K 0–7

Operand Data Type DL130 Range
A aaa

Constant K 0–6

DL105 User Manual, 3rd Ed. Rev. G5-82

Chapter 5: Standard RLL Instructions

MLS/MLR Example
In the following MLS/MLR example, logic between the first MLS K1 (A) and MLR K0 (B)
will function only if input X0 is on. The logic between the MLS K2 (C) and MLR K1 (D)
will function only if input X10 and X0 is on. The last rung is not controlled by either of the
MLS coils.

K1

MLS

X0

C0

OUT

X1

C1

OUT

X2

Y0

OUT

X3

K2

MLS

X10

Y1

OUT

X5

Y2

OUT

X4

K1

MLR

C2

OUT

X5

Y3

OUT

X6

K0

MLR

Y4

OUT

X7

DirectSOFT Handheld Programmer Keystrokes

STR
$ ENT0

A

MLS
Y

1
B ENT

STR
$

1
B ENT

OUT
GX SHFT ENT2

C
0

A

STR
$ ENT2

C

OUT
GX SHFT ENT2

C
1

B

STR
$ ENT3

D

OUT
GX ENT0

A

STR
$ ENT0

A
1

B

MLS
Y ENT2

C

STR
$ ENT5

F

OUT
GX ENT1

B

STR
$ ENT

OUT
GX ENT

4
E

2
C

MLR
T

1
B ENT

STR
$ ENT5

F

OUT
GX SHFT ENT2

C
2

C

STR
$ ENT

OUT
GX ENT

6
G

3
D

MLR
T ENT0

A

STR
$ ENT

OUT
GX

4
E

7
H

ENT

A

C

D

B

DL105 User Manual, 3rd Ed. Rev. G 5-83

Chapter 5: Standard RLL Instructions

Interrupt Instructions
Interrupt (INT)

The Interrupt instruction allows a section of ladder logic to be placed outside
the main body of the program and executed only when needed. High-
Speed I/O Modes 10, 20, and 40 can generate an interrupt. With Mode 40,
you may select an external interrupt (input X0), or a time-based interrupt
(5– 999 ms).

Typically, interrupts are used in an application when a fast response to an input is needed or
a program section must execute faster than the normal CPU scan. The interrupt label and all
associated logic must be placed after the End statement in the program. When an interrupt
occurs, the CPU will complete execution of the current instruction it is processing in ladder
logic, then execute the interrupt routine. After interrupt routine execution, the ladder program
resumes from the point at which it was interrupted.

See Chapter 3, the section on Mode 40 (Interrupt) Operation for more details on interrupt
configuration. In the DL105, only one interrupt is available.

Interrupt Return (IRT)
When an Interrupt Return is executed in the interrupt routine, the CPU
will return to the point in the main body of the program from which it
was called. The Interrupt Return is programmed as the last instruction
in an interrupt routine and is a stand alone instruction (no input contact
on the rung).

Interrupt Return Conditional (IRTC)
The Interrupt Return Conditional instruction is a optional instruction
used with an input contact to implement a conditional return from the
interrupt routine. The Interrupt Return is required to terminate the
interrupt routine.

Enable Interrupts (ENI)
The Enable Interrupt instruction is programmed in the main body of the
application program (before the End instruction) to enable hardware or
software interrupts. Once the coil has been energized, interrupts will be
enabled until they are disabled by the Disable Interrupt instruction.

Disable Interrupts (DISI)
The Disable Interrupt instruction is programmed in the main body of the
application program (before the End instruction) to disable both hardware
or software interrupts. Once the coil has been energized, interrupts will be
disabled until they are enabled by the Enable Interrupt instruction.

O aaaINT

Operand Data Type DL130 Range
Constant O 0

IRT

IRTC

DISI

ENI

DL105 User Manual, 3rd Ed. Rev. G5-84

Chapter 5: Standard RLL Instructions

External Interrupt Program Interrupt
In the following example, when X1 is on, the value 10 is copied to V7634. This value sets the
software interrupt to 10ms. When X20 turns on, the interrupt will be enabled. When X20
turns off, the interrupt will be disabled. Every 10ms the CPU will jump to the interrupt label
INT O 0. The application ladder logic in the interrupt routine will be performed. If X35
is not on, Y0–Y17 will be reset to off and then the CPU will return to the main body of the
program.

NOTE: Only one software interrupt is allowed in the DL105 and it must be Int 0.

S
ta

nd
ar

d
R

LL
In

st
ru

ct
io

ns

DirectSOFT

INT O0

X20

ENI

DISI

X20

END

Y5

SETI

X20

X35

RSTI

Y0 Y17

IRT

Handheld Programmer Keystrokes

LD
K104*

X1

Load the constant value
(K10) into the lower 16 bits
of the accumulator *

OUT
V7634

Copy the value in the lower
16 bits of the accumulator to
V7634

STR
$

SHFT ANDST
L

3
D SHFT 0

A

OUT
GX SHFT AND

V ENT

JMP
K

4
B ENT

7
H

6
G

3
D

4
E

STR
$

SHFT 4
E

TMR
N

8
I ENT

STRN
SP

SHFT ENT3
D

8
I

RST
S

8
I

8
I

ORN
R

MLR
T

STR
$ SHFT 8

I
2

C
0

A ENT

SHFT 8
I

5
F ENT

SHFT 8
I ENT

SHFT 8
I ENT0

A

SHFT 4
E

TMR
N

3
D ENT

SHFT 8
I

TMR
N

MLR
T ENT

SHFT ENT

0
A

1
B ENT

ENT0
A

ENT0
A

2
C

2
C

1
B

7
H

3
D

5
F

SET
X

RST
S

STRN
SP

LD
K40

SP0

OUT
V7633

* The value entered, 3-999, must be followed by the digit 4 to complete the instruction.

.

.

.

SHFT STRN
SP

SHFT 3
D

6
G

3
D ENT

0
A ENT

OUT
GX V 7

H

SHFT 3
D ENTJMP

K
0

A
4

E
ANDST
L SHFT 1

B

STR
$

DL105 User Manual, 3rd Ed. Rev. G 5-85

Chapter 5: Standard RLL Instructions

Message Instructions
Fault (FAULT)

The Fault instruction is used to display a message on the
handheld programmer or DirectSOFT. The message has a
maximum of 23 characters and can be either V-memory data,
numerical constant data, or ASCII text. See Appendix G for the
ASCII Conversion Table.

To display the value in a V-memory location, specify the
V-memory location in the instruction. To display the data
in ACON (ASCII constant) or NCON (Numerical constant)
instructions, specify the constant (K) value for the corresponding
data label area.

NOTE: The FAULT instruction takes a considerable amount of time to execute. This is because the FAULT
parameters are stored in EEPROM. Make sure you consider the instruction execution times (shown in
Appendix C) if you are attempting to use the FAULT instructions in applications that require faster than
normal execution cycles.

S
tandard R

LL
Instructions

FAULT
A aaa

Operand Data Type DL130 Range
A aaa

V-memory V All (See page 4-28)
Constant K 1–FFFF

DL105 User Manual, 3rd Ed. Rev. G5-86

Chapter 5: Standard RLL Instructions

Fault Example
In the following example, when X1 is on, the message SW 146 will display on the handheld
programmer. The NCONs use the HEX ASCII equivalent of the text to be displayed. (The
HEX ASCII for a blank is 20, a 1 is 31, 4 is 34 ...)

SW 146

Direct SOFT

DLBL
K1

S
S

END

FAULT
K1

X1

S
S

ACON
A SW

NCON
K 2031

NCON
K 3436

Handheld Programmer Keystrokes

S
S

STR
$

SHFT
4

E
TMR
N

3
D ENT

SHFT
3

D
ANDST
L

1
B

ANDST
L

1
B ENT

SHFT
0

A
2

C
INST#
O

TMR
N

SHFT
TMR
N

2
C

INST#
O

TMR
N

SHFT
TMR
N

2
C

INST#
O

TMR
N

1
B ENT

ENT

ENT
3

D
3

D
4

E
6

G

ENT
3

D
2

C
0

A
1

B

RST
S

ANDN
W

SHFT
ISG

U
MLR
T

ANDST
L

5
F

0
A

1
B ENT

DL105 User Manual, 3rd Ed. Rev. G 5-87

Chapter 5: Standard RLL Instructions

Data Label (DLBL)
The Data Label instruction marks the beginning of an ASCII / numeric data area. DLBLs
are programmed after the End statement. A maximum of 32 D L B L
instructions can be used in a program. Multiple NCONs and A C O N s
can be used in a DLBL area.

ASCII Constant (ACON)
The ASCII Constant instruction is used with the DLBL
instruction to store ASCII text for use with other instructions.
Two ASCII characters can be stored in an ACON instruction.
If only one character is stored in an ACON, a leading space
will be inserted.

Numerical Constant (NCON)
The Numerical Constant instruction is used with the DLBL
instruction to store the HEX ASCII equivalent of numerical
data for use with other instructions. Two digits can be stored
in an NCON instruction.

K aaa
DLBL

A aaa
ACON

K aaa
NCON

Operand Data Type DL130 Range
aaa

Constant K 1–FFFF

Operand Data Type DL130 Range
aaa

ASCII A 0–9 A–Z

Operand Data Type DL130 Range
aaa

Constant K 0–FFFF

DL105 User Manual, 3rd Ed. Rev. G5-88

Chapter 5: Standard RLL Instructions

Data Label Example
In the following example, an ACON and two NCON instructions are used within a DLBL
instruction to build a text message. See the FAULT instruction for information on displaying
messages. The DV-1000 Manual also has information on displaying messages.

DirectSOFT

Handheld Programmer Keystrokes

DLBL
K1

END

ACON
A SW

NCON
K 2031

NCON
K 3436

SHFT 4
E

TMR
N

3
D ENT

SHFT 3
D

ANDST
L

1
B

ANDST
L

1
B ENT

SHFT 0
A

2
C

INST#
O

TMR
N

SHFT TMR
N

2
C

INST#
O

TMR
N

SHFT TMR
N

2
C

INST#
O

TMR
N

ENT3
D

3
D

4
E

6
G

ENT3
D

2
C

0
A

1
B

ENTRST
S

ANDN
W

	Chapter 5 - Standard RLL Instructions
	Introduction
	Using Boolean Instructions
	Boolean Instructions
	Comparative Boolean
	Immediate Instructions
	Timer, Counter and Shift Register Instructions
	Accumulator/Stack Load and Output Data Instructions
	Logical Instructions (Accumulator)
	Math Instructions
	Bit Operation Instructions
	Number Conversion Instructions (Accumulator)
	Table Instructions
	CPU Control Instructions
	Program Control Instructions
	Interrupt Instructions
	Message Instructions

