D2–RMSM Setup Programming

In This Chapter. . . .

- Getting Started with Your Programming
- Writing Your Remote I/O Setup
- Examples for Typical Configurations
- Changing Configurations
- Shared Memory Table for D2-RMSM

Getting Started with Your Programming

You can write your program using either a handheld programmer or a PC loaded with software such as *Direct*SOFT. The examples that follow will show you how to do it using *Direct*SOFT.

To get started, enter **Direct**SOFT and carry out the normal **Direct**SOFT setup procedures for communicating with your DL205 CPU. If you do not know how to do this, refer to your **Direct**SOFT Manual. Your DL205 User's Manual has a very good coverage of the basic commands available and examples of using the commands to write general ladder logic. We will be showing you in this chapter only those commands that pertain to setting up your remote I/O initialization and its successful utilization.

First open *Direct*SOFT from Windows and establish a link with your CPU. Then enter the Edit Mode for programming. You should now be looking at a screen similar to the one shown below:

The *Direct*SOFT window shown above depicts a program that has already been written. Your window, of course, will be empty when you first enter it. The pages that follow will show you how to write each part of your initialization program.

Δ_

Writing Your Remote I/O Setup

Step 1: Decide How You Are Going to Call Your Program

Is your setup logic going to be in the main program body or is it going to be in a subroutine?

A subroutine for your remote I/O setup has an advantage over writing the code into the program's main body. Some remote I/O setup logic becomes quite lengthy. By putting the setup in a subroutine, you don't have to scroll through extra logic during routine troubleshooting procedures. We advise you to use a subroutine for your remote I/O initialization. Here's how:

Using the GTS Command for the Setup Logic

Step 2: Whether you choose to write the remote I/O setup program as a subroutine or as a Write the Setup part of the main program, the procedure is still the same. You have several things Logic for Each you must do for each channel of remote I/O: Channel Tell the remote master to initiate setup, and define the auto return to network option. Tell the remote master the starting V-memory address for inputs and • outputs, and the total number of each for the channel. You do this with address *pointers* and constant data. Tell the remote master how many input and output points are located in each base. Tell the remote master to save the parameters in EEPROM (setup is complete).

To write the setup logic, we use the CPU instructions described below. If you are not familiar with these instructions, you may want to refer to the DL205 User Manual for more details and examples.

The Load instruction is a 16-bit instruction that loads the value (Aaaa), which is either a V-memory location or a 4-digit constant, into the lower 16 bits of the accumulator. The upper 16 bits of the accumulator are set to 0.

The Load Address instruction is a 16 bit instruction. It converts any octal value or address to the HEX equivalent value and loads the HEX value into the accumulator.

The OUT instruction is a 16 bit instruction that copies the values in the lower 16 bits of the accumulator to a specified V-memory location (Aaaa).

The WT instruction writes a block of data (1–128 bytes max.) to an intelligent I/O module from a block of V-memory in the CPU. The function parameters (module base/slot address, number of bytes, and the intelligent I/O module memory address) are loaded into the first and second level of the accumulator stack, and the accumulator by three additional instructions. In the WT instruction, Aaaa specifies the starting V-memory address where the data will be written from in the CPU.

LD A aaa

WT
A aaa

You use these instructions to set up the configuration data in a block of V-memory which serves as a buffer. Use WT instructions to store the data to various shared memory locations in the Remote Master module. Use your worksheets to assist you in creating the setup logic.

Examples for Typical Configurations

Example 1: Addressing using X and Y memory To illustrate the setup program for a system using X's as remote inputs and Y's as remote outputs, we will use the example system from Chapter 2, shown here with a completed Channel Configuration Worksheet.

The first block of logic tells the remote master to initiate the setup, and to enable the Auto Return to Network option. To find the D2–RMSM shared memory addresses used in the setup program, refer to the Shared Memory Table at the end of this chapter.

Write Configuration Byte

This block of logic tells the remote master the starting V-memory addresses for the inputs and outputs, and the total number of each for the channel. Use the LD, LDA, and OUT commands to load the starting addresses and point totals into temporary memory, then write the values to the master's shared memory. The Quick Reference Table shows the correct shared memory addresses in octal.

3

4

5

6

7

N/A

014

020

024

030

034

016

022

026

032

036

Channel Configuration Worksheet

This block of logic tells the remote master how many input and output points are located in each base. Each group of four instructions loads the I/O ranges for a slave into temporary memory, the values for which are retrieved from the Remote Slave Worksheets. The WT instruction stores the entire buffer area to the master's shared memory. The Quick Reference Table shows the correct shared memory addresses in octal.

Write Input and Output Ranges for each Slave

each Slave	}					D2–RMSM R Master Slot Protocol Sel	emote M Address ected _F	aster Modu <u>4</u> (1–7 RM–NET (R	l le ′)_ M–NET or SM	I–NET)
SP0	LD K32	Slave I Input points	l r	Circle one se	lection for each	n parameter (sel	ections for	r each protoco	ol are shown)	T
		V-memory buffer		Baud Rate (ii distance to la	n KBaud), dete ast slave	rmined by requi	red 19.	.2 (38.4)	19.2 38.4 307.2 614.4	153.6
	LD K48	Slave 1 Output points		Operator Inte Auto Return 1	erface to Network (eith	ner protocol)	YES		YES NO YES NO	
	OUT V2004	V-memory buffer		Starting Inpu Total Inputs	t V Memory Ad 96	ddress: V <u>4040</u>	2 Starting Total O	g Output V M utputs11	emory Address: 2	: v <u>4050</u> 2
	LD K16	Slave 2 Input points		Slave Station	No. of Inputs	No. of Outputs	Slave Station	No. of Inputs	No. of Outputs	2
	OUT V2005	V-memory buffer		0	N/A 32	N/A 48	16 17			-
	LD K32	Slave 2 Output points		2	16	32	18 19			1
		V-memory buffer		4			20			
SP0	LD K48	Slave 3 Input points		5 6			21 22			
		V-memory buffer		7 8			23 24			-
		Slave 3 Output points		9 10			25 26			1
	OUT	V-memory buffer		11			27			1
	V2010	Maatar madula address		12			28 29			
	K04	Master module address		14			30			-
		Number of bytes		15			31]
	LDA O04	Shared Memory address				Quick Re	feren	ice Tab		
	V2003	Write Master memory			of Sh	ared Me	mory	Addres	sses	
1 /							-11/15/	VI		

The last four instructions write the slaves' range data to the Master's shared memory. Address 004 is the *start* of the slave data; the byte length of 12 writes 6 consecutive words of data.

DZ-RIVISIVI						
С		176				
Se	177					
Slave	Input Address	Output Address	Number of Input Pts	Number of Output Pts		
ALL	000	002	124	126		
1	N/A	N/A	004	006		
2	N/A	N/A	010	012		
3	N/A	N/A	014	016		
4	N/A	N/A	020	022		
5	N/A	N/A	024	026		
6	N/A	N/A	030	032		
7	N/A	N/A	034	036		

Write Setup Complete (store channel parameters to EEPROM)

We can now complete the setup program. This last block of logic tells the remote master to save the parameters in EEPROM (setup is complete). The setup complete logic structure is the same for any channel using a D2–RMSM as a master.

The completed setup program for this example is shown on the next page.

Completed Setup Program for X and Y Addressing

Example 2: Addressing using Control Relay Memory Memory I/O references in the system, and need to address remote I/O as a memory type other than real inputs (X type) and/or real outputs (Y type). If you have used all available I/O references in the system, and need to add remote I/O, you can use the control relay (C type) memory as the I/O references. You may allocate C memory for inputs, outputs, or both. To write a setup program with this option, we will use the system from Example 1.

To write a setup program with this option, we will use the system from Example 1. This example illustrates the difference in defining the pointer addresses; we have assigned both inputs and outputs to control relay references. Retrieve the V–memory addresses for the input and output control relays from the Reserved Memory Table in Appendix B. The rest of the setup logic is identical to Example 1.

Write Configuration Byte

This block of logic tells the remote master the starting V-memory addresses for the inputs and outputs, and the total number of each for the channel. The V-memory addresses correspond to C0 (for inputs) and C200 (for outputs). Load the starting addresses and point totals into temporary memory, then write the values to the master's shared memory. The Quick Reference Table shows the correct shared memory addresses in octal.

Since the logic for the slave range data and setup complete is identical to Example 1, we will now show the completed setup program on the next page.

7

N/A

N/A

034

036

Changing Configurations

If you have stored a configuration to the D2–RMSM via the setup program and need to change it, follow these guidelines to ensure the module accepts the new configuration:

- Change the constants in the setup program that are affected by the new system configuration. For example, if you add an I/O module to a remote slave unit, you must change the input or output range for that slave, as well as the range total for the channel. If the new range totals do not match the sum of the individual slave ranges, the D2–RMSM *will not* accept the new configuration. It will retain the old configuration, and give you an I/O error.
- 2. If you are removing a slave from the channel, you must change the logic of the setup program to clear that slave's range data in the D2–RMSM shared memory. Otherwise it will still see the old data from the previous configuration. For example, if you remove the third slave from our example system, you would load a constant of zero into the slave's input and output range data, located at buffer memory addresses V2007 and V2010. If removing I/O, remember to reduce the total I/O range values also.
- 3. After you have modified the setup program, cycle CPU power, or transition from the STOP to RUN mode to execute the new setup logic. This is necessary if the setup logic executes on the first CPU scan.

Shared Memory Table for D2–RMSM Remote Master

OCTAL	FUNCTION	FUNCTION	
ADDRESS	(Slaves 1–15)	(Slaves 16–31)	Bytes
For memory ad	Idresses 000 to 077, the user's setup program	n must store the correct values into these loo	cations.
000	Starting V–memory address for inputs on the channel (in octal)	Number of input points for Slave 16	2
002	Starting V–memory address for outputs on the channel (in octal)	Number of output points for Slave 16	2
004	Number of input points for Slave 1	Number of input points for Slave 17	2
006	Number of output points for Slave 1	Number of output points for Slave 17	2
010	Number of input points for Slave 2	Number of input points for Slave 18	2
012	Number of output points for Slave 2	Number of output points for Slave 18	2
014	Number of input points for Slave 3	Number of input points for Slave 19	2
016	Number of output points for Slave 3	Number of output points for Slave 19	2
020	Number of input points for Slave 4	Number of input points for Slave 20	2
022	Number of output points for Slave 4	Number of output points for Slave 20	2
024	Number of input points for Slave 5	Number of input points for Slave 21	2
026	Number of output points for Slave 5	Number of output points for Slave 21	2
030	Number of input points for Slave 6	Number of input points for Slave 22	2
032	Number of output points for Slave 6	Number of output points for Slave 22	2
034	Number of input points for Slave 7	Number of input points for Slave 23	2
036	Number of output points for Slave 7	Number of output points for Slave 23	2
040	Number of input points for Slave 8	Number of input points for Slave 24	2
042	Number of output points for Slave 8	Number of output points for Slave 24	2
044	Number of input points for Slave 9	Number of input points for Slave 25	2
046	Number of output points for Slave 9	Number of output points for Slave 25	2
050	Number of input points for Slave 10	Number of input points for Slave 26	2
052	Number of output points for Slave 10	Number of output points for Slave 26	2
054	Number of input points for Slave 11	Number of input points for Slave 27	2
056	Number of output points for Slave 11	Number of output points for Slave 27	2
060	Number of input points for Slave 12	Number of input points for Slave 28	2
062	Number of output points for Slave 12	Number of output points for Slave 28	2
064	Number of input points for Slave 13	Number of input points for Slave 29	2
066	Number of output points for Slave 13	Number of output points for Slave 29	2
070	Number of input points for Slave 14	Number of input points for Slave 30	2
072	Number of output points for Slave 14	Number of output points for Slave 30	2
074	Number of input points for Slave 15	Number of input points for Slave 31	2
076	Number of output points for Slave 15	Number of output points for Slave 31	2

OCTAL ADDRESS	FUNCTION	DETAIL	# Bytes
100 – 121	Reserved		18
122	Status of Rotary Switches on module – Read Only	Data is 00 to 1F hex, representing the ad- dress of the module set by the rotary switches.	1
123	Status of DIP Switches on module – Read Only	Bit status represents the setting of each switch on the module's DIP Switch , which sets configuration parameters. 0=OFF, 1=ON.Bit 0SW1 statusBit 1SW2 statusBit 2SW3 statusBit 3SW4 statusBit 4SW5 statusBit 5SW6 statusBit 6SW7 status	1
		Bit 7 SW8 status	
124	Number of input points committed to the entire channel	User's setup program stores the correct BCD value to this memory location.	2
126	Number of output points committed to the entire channel	User's setup program stores the correct BCD value to this memory location.	2

OCTAL ADDRESS	FUNCTION		DETA	IL	# Bytes	
130 – 131	Communication stop mode selection (com- munication stops when any specified slave fails)	In com stops u commu cified s each s of the s	In communication stop mode, the master stops updating the entire channel when a communication error occurs with any spe- cified slave station. To select this mode for each slave, turn ON the corresponding bit of the shared memory shown below.			
			Address 130	Address 131		
		Bit 0	Entire channel stops when any slave fails	Slave 16		
		Bit 1	Slave 1	Slave 17		
		Bit 2	Slave 2	Slave 18		
		Bit 3	Slave 3	Slave 19		
		Bit 4	Slave 4	Slave 20		
		Bit 5	Slave 5	Slave 21		
		Bit 6	Slave 6	Slave 22		
		Bit 7	Slave 7	Slave 23		
		Bit 8	Slave 8	Slave 24		
		Bit 9	Slave 9	Slave 25		
		Bit 10	Slave 10	Slave 26		
		Bit 11	Slave 11	Slave 27		
		Bit 12	Slave 12	Slave 28		
		Bit 13	Slave 13	Slave 29		
		Bit 14	Slave 14	Slave 30		
		Bit 15	Slave 15	Slave 31		

	D2–RMSM Setup Programmir	g 4 —1	17
FUNCTION	DETAIL	# Bytes	
Slave removal mode selection (commu- nication stops to only the slave(s) with a communication error)	In slave removal mode, the master stops updating only the slave(s) with a communication error. It continues updati the I/O for the other slaves on the chanr To select this mode for each slave, turn ON the corresponding bit of the shared memory shown below.	s 2 ng el.	
	Address 132Address 133Bit 0Not usedSlave 16Bit 1Slave 1Slave 17Bit 2Slave 2Slave 17Bit 3Slave 3Slave 19Bit 4Slave 4Slave 20Bit 5Slave 5Slave 21Bit 6Slave 6Slave 22Bit 7Slave 7Slave 23Bit 8Slave 9Slave 24Bit 9Slave 10Slave 25Bit 10Slave 11Slave 27Bit 12Slave 13Slave 29Bit 13Slave 14Slave 30Bit 15Slave 15Slave 31		
Communication hold or resume mode	The program can cause the communications on a channel to stop by setting the first bit in this byte ON. After communication stops, only a mode transition of the CPU (from STOP to RU will restart the communications. The bit not cleared automatically, so if using this	1 N) s	Setup

		Bit 11 Bit 12 Bit 13 Bit 14 Bit 15	Slave 11 Slave 12 Slave 13 Slave 14 Slave 15	Slave 27 Slave 28 Slave 29 Slave 30 Slave 31	
134	Communication hold or resume mode	The pro commu setting commu transitio will res not clea mode, byte on	ogram can caus inications on a the first bit in th inication stops, on of the CPU (tart the commu ared automatica the user progra on the first scan.	se the channel to stop by his byte ON. After only a mode (from STOP to RUN) nications. The bit is ally, so if using this am should clear this	1
135 – 137	Reserved				3
140	Network Error Flags – Read Only	Bit stat detecte 1=ERR	us represents r ed by the D2–R OR	network errors MSM. 0=OK,	2
		DILU	142 for details	s)	
		Bit 1	Communication Address 144 f	on Error (see for details)	
		Bit 2	Diagnostics E 150 for details	rror (see Address	

OCTAL ADDRESS

132 – 133

OCTAL ADDRESS	FUNCTION	DETAIL	# Bytes
142	Configuration Error Code – Read Only	Error code in BCD	1
		20 Total inputs exceeds 512	
		21 Total outputs exceeds 512	
		24 I/O address out of I/O range	
		25 I/O address allocated to bad range	
		29 A slave has more than 512 points	
		70 Discrepancy between current configuration and old one	
		71 A module is in the wrong slot	
		72 Slave configuration is different from old one	
		73 Different slave is there	
143	Station Number of Configuration Error – Read Only	Station number in BCD	1
144	Communication Error Code – Read Only	Error code in BCD	
		01 slave does not respond	
		02 wrong I/O information	
		03 I/O update error : CRC check error	
145	Station Number of Communication Error Code – Read Only	Station number in BCD	1
146	Communication Error Counter – Read Only	Number of communication errors detected since CPU went into RUN mode, in BCD	2
150	Diagnostics Error Code	Error code in BCD	2
		0201 Terminal block removed	
		0202 module not present	
		0203 Blown fuse	
		0206 Low battery voltage	
		0226 Power capacity exceeded	
152	Reserved		1
153	Station number of Diagnostics error – Read Only	Station number in BCD	1

OCTAL ADDRESS	FUNCTION	DETAIL	# Bytes
154 – 157	Reserved		4
160	Current bus scan time – Read Only	BCD value of current bus scan, in msec	2
162	Bus scan time upper limit	User can store BCD value of bus scan upper limit, in msec. Default is 100 msec.	2
164	Shortest bus scan time – Read Only	BCD value of shortest bus scan detected since CPU went into RUN mode, in msec	2
166	Longest bus scan time – Read Only	BCD value of longest bus scan detected since CPU went into RUN mode, in msec	2
170	Bus scan counter – Read Only	BCD value of number of bus scans de- tected since CPU went into RUN mode	2
172	Overlimit Bus scan counter – Read Only	BCD value of number of bus scans which have exceeded the scan time upper limit	2
174 – 175	Reserved		2
176	Setup Initiation Byte (includes Auto Return to Network)	User's setup program stores the correct bit pattern to this memory location to configure the following modes: Bits 0,1, and 2 must be ON to initiate setup of remote slave addressing	1
		Bit 7 ON=Specifies that offline slaves can return to the network without cycling CPU	
177	Copy Configuration to EEPROM (Setup Complete)	User's setup program stores a BCD value to this location to log the parameters stored by the setup program to the Master's EEPROM.	1
		C1 – Signifies that setup is complete.	
		HINT: This should be the last function of your setup program.	
200 - 374	Reserved		125

OCTAL ADDRESS	FUNCTION	DETAIL	# Bytes
375	Slave Page Selection	User's setup program stores a BCD value to this location to select the page of slave parameters for setup programming: 81 Slaves 1–15 82 Slaves 16–31	1
376 – 377	Reserved		2

D2–RMSM				
Setup Initiation Byte				176
Setup Complete Byte				177
Slave	Input	Output	Number of	Number of
	Address	Address	Input Points	Output Points
ALL	000	002	124	126
1	N/A	N/A	004	006
2	N/A	N/A	010	012
3	N/A	N/A	014	016
4	N/A	N/A	020	022
5	N/A	N/A	024	026
6	N/A	N/A	030	032
7	N/A	N/A	034	036
8	N/A	N/A	040	042
9	N/A	N/A	044	046
10	N/A	N/A	050	052
11	N/A	N/A	054	056
12	N/A	N/A	060	062
13	N/A	N/A	064	066
14	N/A	N/A	070	072
15	N/A	N/A	074	076
2nd page of slave range data				
16	N/A	N/A	000	002
17	N/A	N/A	004	006
18	N/A	N/A	010	012
19	N/A	N/A	014	016
20	N/A	N/A	020	022
21	N/A	N/A	024	026
22	N/A	N/A	030	032
23	N/A	N/A	034	036
24	N/A	N/A	040	042
25	N/A	N/A	044	046
26	N/A	N/A	050	052
27	N/A	N/A	054	056
28	N/A	N/A	060	062
29	N/A	N/A	064	066
30	N/A	N/A	070	072
31	N/A	N/A	074	076

Quick Reference Table of Shared Memory Addresses