FC-3RIY4 Analog Input, 4-Point Relay Limit Alarm Module

Description:

Field configurable Analog to Relay Limit Alarm module is field configurable for a variety of Field configurable Analog to Relay Limit Alarm module is field configurable for a variety of
alarm and control applications. This module can be powered by 24VAC or 24VDC and accept alarm and control applications. This module can be powered by 24VAC or 24VDC and accept
input signals of $0-15 \mathrm{~V}, 0-30 \mathrm{~V}$, or $0-20 \mathrm{~mA}$. Configuration and Trip/Release Point programming is accomplished with DIP switches and a single PGM-pushbutton. LED's provide indication of DIN rail or side mounted.

Specifications (continued)				
Humidity			5 to 95\% (non-condensing) IEC 60068-2-30 (Test Db, Damp Heat)	
Environmental Air			No corrosive gases permitted (EN61131-2 pollution degree 1)	
Vibration			MIL STD $810 C 514.2$IEC 60068-2-6 (Test FC)	
Shock		$\begin{gathered} \hline \text { MIL STD 810C 516.2 } \\ \text { IEC 60068-2-27 (Test Ea) } \\ \hline \end{gathered}$		
Insulation Resistance		$>10 \mathrm{M} \Omega$ @ 500 VDC		
Noise Immunity				
Weight		0.31 lbs		
Isolation*		1800 VDC Power to Output 1800 VDC Input to Output applied for 1 second (100% Tested)		
Agency Approvals		UL508**, File \#E157382, CE		
** The OV and COM terminals should be considered the same reference point. There is no isolation between the External Power and Input Terminal blocks. * In order to comply with UL508 Class 2 standards the supplied power must be less than 26VDC and fuse at a maximum of 3 amps .				
Factory Settings				
INC Mode:	Range	Trip Point	$\left(\begin{array}{c} \text { Release Point } \\ (\text { RP }=T P-\text { Dead-band }) \end{array}\right.$	Dead-band **
	0-15VDC	7.5 V	7.125 V	2.5\% (0.355)
	0-30VDC	15V	14.25 V	2.5\% (0.75)
	0.20 mA	$N A^{*}$	N/ ${ }^{*}$	7.5\% (1.5mA)
DEC Mode:	Range	Trip Point	$\begin{gathered} \text { Release Point } \\ \text { (RP = TP + Dead-band }) \end{gathered}$	Dead-band **
	0-15VDC	7.5V	7.875 V	2.5\% (0.375V)
	0-30VDC	15 V	15.75	2.5\% (0.75)
	$0-20 \mathrm{~mA}$	N/A*	N/**	7.5\% (1.5mA)
* No Factory Settings for 0-20mA Input Range. ** (Dead-band \% calculated from full range voltage.)				

Wiring Connections

Status Indicators

Mode (Green/Red):
Green LED ON when unit is powered.
Red LED ON when in Program Mode. Flashes when setting
Custom Release Point
Custom Release Point.
Flashes Red/Green to indicate a Trip/Release Point - programming error.

Trip Points A, B, C and D (Red):
Red ON when a Trip Point is tripped.
Red LED is ON when setting a TTip Point in Program Mode.
Flashes Red when setting a Release Point in Program Mode
To Return to Factory Settings:

- Hold PGM pushbulton down for 10 seconds.

Mode LED turns GREEN. Unit has been succeessfully returned to
Factory Settings values.
Factory Reset does not tunction in Programming Mode.

DIP Switch Settings

Modes of Operation
Independent and Simultaneous Relay Control Modes: Independent Relay Control Mode
[DIP Switch 7 OFF]
Relays A, B, C and D are controlled with independent Relays A, B, C and D are conrofed wern reendent
Trip Points and Release Points for each relay lays can be independently set to operate in Increasing
or Decreasing mode (see next section). This mode can be used to control multiple loads in sequence, or monitor for multilevel alarm conditions.

Modes of Operation (continued)

Decreasing (DEC) Mode
[Relay A:DIP Switch 3 ON: Relay B B DP Switch 4 ON;
Relay C:DIP Swith 5 ON; Relay D: DIP Switch 60 N Relay C:DIP Switch 5 ON; Relay D:DPIP Swich 6 ON]
The relay will turn ON when the input sign decreases to the programmed Trip Point. The
relay will remain ON until the input sigal

increases above the Release Point. In DEC
mode, the Trip Point must always be less than the Release Point (TP < RP)

Application Example
Application Example for configuring the FC-3RLY4 as a High-High Alarm, High Alarm, Low Alarm and Low-Low Alarm using a 4 -20mA input. His example illustrates how to setup the FC-3RLY4 to provide alarm conditions based on the input value of a $4-20 \mathrm{~mA}$ sensor. The HIGH-HIGH alarm relay [Relay A] will operate at an input value of 17 mA and release at 15.5 mA . The HIGH alarm relay [Relay B] wil
operate at an input value of 14.5 mA and release at 12.5 mA . The 10 W linit relay [Relay C] will operate at an input value of 6.5 mA operate at an input value of 14.5 mA and release at 12.5 mA . The LOW imit reay [Relay C] will operate at an
and release at 8 mA and the LOW-LOW alarm relay [Relay D] will operate at 4.25 mA and release at 5.5 mA .

1. Set DIP switch settings for 0 -20mA input [$[11$ \& $S 2=1]$, Trip Point A to INC [S3 $=0]$ T Trip Point B to INC [S4=0], Trip Point C to DEC [S5= 1], Trip Point D Do DEC [S6=1] and Independent Relay Control ON [S7 ST 0]. All other switches should be set to 0 .
2. Apply $24 V D C$ power to module by connecting to terminals marked [24V] and [OV]. Connecta a mA source to input terminals marked [$V+I+1+$ and $[C O M]$.
3. Press and Hold "PGM" pushbutton for 3 Seconds. Mode LED changes from GREEN to RED. Relay A LED turns ON
4. For this example adjust the input signal source to 17 mA for Relay A Trip Point.
5. Press and Release "PGM" pushbutton. Relay A LED flashes to confirm Trip Poi
6. Press and Release "PGGM" "ushbubtuon. Relay A LLED flashes to confirm Trip Point A is programmed. "PGe
7. Press and Hold "PM" pushbutto for 3 Seconds. . Relay A LED begins flashing, Mode LED flashes RED.
8. Now adiust the input signal for Relay A Release Point to 15.5 mA .
9. Now adjust the input signal for Relay A Release Point to 15.5 mA .
10. Press and Release "PGM" pushbutton.
11. Relay A LED stops blinking and turns OFF Relay B ED . turns on.
12. Press and Release Pank pushbutrn PFF. Relay B LED turns
13. Relay A LLD stops likning and
14. Adjust the Input Signal for Relay B Trip Point to 14.5 mA .
15. Adjust the Input Signal for Relay B Trip Point to 14.5 mA
16. Press and Release "PGM" pushbutton. Relay B LED flas
17. Press and Release "PGM" pushbutton. Relay B BED flashes to confirm Trip Point B is programmed. Mode LED flashes RED. 12. Press and Hold "PGM" pushbutton for 3 Seconds. Mode LED changes from RED to OFF. Release the "PGM" pushbutton. 13. Apply 12.5 mA t to the innuts signal for Relay B Release Point.
18. Press and Release "PGM" pushbutton.
19. Relay B LED stops flashing and turns OFF. Relay C LeD turns 0 I.
20. Relay B LED stops flashing and turns OFF. Relay CLED
21. Adjust the Input Signal for Relay C Trip Point to 6.5 mA .
17 Press and Relose "Pa"
22. Adjust the Input Signal tor Relay C Trip Point to 6.5 mmA .
23. Press and Release "PGM" pushbutton. Relay C LED flashes to confirm Trip Point B is programmed.
24. Press and Hold "GGM" usshbutton for 3 Seconds. Mode LED changes tro
25. Press and Hold "PGM" pushbutton for 3 seconds. Mode LED changes from RED to off. Release the "PGM" pushbutton.
26. 19. Apply 8mA to the input signal for Relay C Release Point.
1. Press and Release "PGM" pushbutton.
2. Relay C LeD stops flashing and turns OFF. Relay D LED Uurns ON.
3. Adiust the Inut Signal for Relay D Trip Point to 4 . 5 mA .
4. Adiust the Input Signal for Relay D Trip Point to 0.25 mA .
5. Press and Release "PGM" pushbutton. Relay D LED flashes to confirm Trip Point D is programmed. "PGM" pushbutton.
6. Press and Hold "PGM" pushbutton for 3 Seconds. Mode LED changes from RED to OFF. Release the "PGM

7. Lastly, apply 5.5 FmA to the input signal for Relay D Release Point.
8. Press and Release "PGM"
9. All Relay LEDs turn ON.
10. Press and Release "PGM" pushbutton. Mode LED changes from RED to GREEN.
11. Press and Release "PGiM pushbutton. Node LED changes from RED to GR
12. .
astom Trip Point Programming with Custom Release Points completed.
13. Test the functionality by applying a mA source to the input and cyciling through the range from 15.6 mA to 4.2 mA . Make sure
