DL250 / DL350 / DL450 CPU With T1K–RSSS Remote I/O System

In This Chapter. . .

- DL250/D350/DL450CPU Bottom Port as Remote Master
- Remote Slave (T1K-RSSS) Features
- Configuring the Bottom Port of the DL250/DL350/450 CPU
- Setting the T1K-RSSS Rotary Switches
- Setting the T1K-RSSS DIP Switches
- Examples for Typical Configurations
- DL250/DL350/DL450 Reserved Memory for Bottom Port
- DL250/DL350/DL450 V Memory Port Setup Registers
- Connecting the Wiring
- Special CPU Memory for Diagnostics

DL250/DL350/DL450 CPU Bottom Port as Remote Master

For the D2–250, D3–350 CPU or D4–450, the most cost-effective way to add remote I/O is to use the bottom port of the CPU as a remote master. The restriction is that it operates in the RM–NET protocol only, which means a maximum of seven slaves at a maximum baud rate of 38.4 kBaud. Also, the slave serial communications port is not active in RM–NET protocol.

This configuration requires some setup programming for the CPU. You can write your program using either a handheld programmer or *Direct*SOFT Programming Software. The examples that follow will show you how to do this using *Direct*SOFT.

To get started, launch *Direct*SOFT and carry out the normal *Direct*SOFT setup procedures for communicating with your DL250, DL350 or DL450 CPU. If you do not know how to do this, refer to your *Direct*SOFT User Manual. Your PLC User Manuals have very good coverage of the basic commands available and examples of using the commands to write general ladder logic. We will be showing you in this chapter only those commands that pertain to setting up your remote I/O initialization.

Remote I/O Master Functional Specifications	DL250	DL350	DL450	
CPU built-in Remote I/O channels	1	1	1	
Maximum I/O points supported by each channel	2048*	2048*	2048*	
Maximum number of remote I/O slaves per channel	7	7	7	
Transmission Distance (max.)	3900 feet (1.2Km)			
Communication Method	Asynchronous (half-duplex)			
X Inputs available for Remote I/O	512 512 1024			
Y Outputs available for Remote I/O	512	512	1024	
Control Relays available for Remote I/O	1024	1024	2048	
V Memory (words) available for Remote I/O	7168	7168	14848	

*Requires CPU firmware version: D2–250 version 1.51 or later, D3–350 version 1.30 or later, and D4–450 version (SH)1.460 or (SH)2.460 or later. Earlier firmware version supports 512 I/O points per channel.

Remote Slave (T1K-RSSS) Features

,		7
	Maximum # of I/O Modules per Slave	16 (be sure to check power budget)
	Maximum Remote I/O Points per CPU Note: 8 channel analog modules consume 256 discrete I/O pts. and 16 channel analog modules consume 512 I/O pts. V memory addressing is recom- mended when using analog I/O modules.	DL250, DL350 and DL450 support a maximum of 2048 points per channel. The actual I/O available is limited by total available references. For example, the DL250 has a total of 512 X inputs and 512 Y outputs. Mapping remote I/O into control relays or V memory of could allow more I/O points for the DL250.
	Module Type	Non-intelligent slave
	Digital I/O Consumed	Consumes remote I/O points at a rate equal to the number of I/O points configured in each unit.
	Communication Baud Rates	<u>RM–NET</u>
		Selectable: 19.2K baud 38.4k baud
	Communication Failure Response	Selectable to clear or hold last state of outputs

The following specifications define the operating characteristics of the T1K–RSSS module.

Physical Specifications

Installation Requirements	mount to right of first power supply
Base Power Requirement	250 mA maximum
Communication Cabling	for remote I/O, RS-485 twisted pair, Belden 9841 or equivalent
Slave Serial Communications Port	not active in RM–NET mode
Operating Temperature	32 to 131° F (0 to 55° C)
Storage Temperature	–4 to 158° F (–20 to 70° C)
Relative Humidity	5 to 95% (non-condensing)
Environmental air	No corrosive gases, pollution level = 2 (UL 840)
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3–304 Impulse noise 1us, 1000V FCC class A RFI (144MHz, 430MHz, 10W, 10cm)

Configuring the Bottom Port of the DL250/DL350/DL450 CPU

To configure the port using the Handheld Programmer, use AUX 56 and follow the prompts, making the same choices as indicated below on this page. To configure the port in *Direct*SOFT, choose the PLC menu, then Setup, then Setup Secondary Comm Port. The port can also be configured using ladder logic code.

- **Port:** From the port number list box at the top, choose "Port 2" for the DL250 and DL350. Choose "**Port 3**" for the DL450.
- **Protocol:** Click the check box to the left of "Remote I/O" (called "M–NET" on the HPP), and then you'll see the dialog box shown below.

Setup Communication Ports	
Port: Port 2 Close Protocol: K-sequence DirectNET MODBUS Non-sequence Remote I/O Memory Address: V37700 Station Number: 0 Baud Rate: 38400	Choose- Port 3 for DL-450

- Memory Address: Choose a V-memory address to use as the starting location of a Remote I/O configuration table (V37700 is the default). This table is separate and independent from the table for any Remote Master(s) in the system.
- Station Number: Choose "0" as the station number, which makes the DL250, DL350 or DL-450 the master. Station numbers 1–7 are reserved for remote slaves.
- Baud Rate: The baud rates 19200 and 38400 baud are available. Choose 38400 initially as the remote I/O baud rate, and revert to 19200 baud if you experience data errors or noise problems on the link. Important: You must configure the baud rate on the Remote Slaves (via DIP switches) to match the baud rate selection for the CPU's Port 2 (DL450 port 3).

Then click the button indicated to send the Port 2 or Port 3 configuration to the CPU, and click Close.

Setting the T1K–RSSS Rotary Switches

The slave has two small rotary switches to set the unit address. They are on the face of the module, with the label "UNIT ADRS" beside it. Adjust the switches by rotating them with a small flathead screwdriver.

One switch is marked X1 and the other X10. Don't confuse these with the conventional data type labeling – *these do not refer to inputs* X1 and X10. Instead, these set the address in <u>decimal</u> for each unit. X1 is the "one's" position and X10 is the "ten's" position. For example, set address 7 by turning the X10 switch to 0 and the X1 switch to 7.

Set them to any number 1–7 for RM–NET. Two slaves cannot have the same number if they are linked to the same master. Always use consecutive numbers for slaves, starting with Address 1—don't skip numbers.

Setting the T1K–RSSS DIP Switches

The remote slave has an 8–position DIP switch labeled "SW1" that is located on the side of the module under a hinged cover. Set these switches to configure the protocol mode, the baud rate, the output response on communication failure. The slave serial port is not active in RM–NET mode. The word "ON" appears beside the switch to indicate the ON position.

DIP Switch Settings

Module		DIP Position						
	1	2,3,4	5	6,7,8				
Slave	Mode	Baud Rate	Output Default	Serial Port not active in				
(T1K-RSSS)	OFF=SM-NET	Switch Position	OFF=Clear	RM–NET mode				
(ON=RM-NET	Baud Rate 2 3 4	ON=Hold					
		19.2K O O O						
		38.4K X O O						
		Note: Higher baud rate are						
		not supported by RM–NET						

<u>Mode:</u> DIP switch Position 1 on both the master and slave unit selects the protocol mode for the remote I/O link. Since the CPU port only supports the **RM–NET** protocol, Position 1 of the master and all slaves linked to it must be set to the ON position in order to communicate.

Baud Rate: RM–NET protocol mode supports either 19.2K or 38.4K baud. In this mode, only switch Position 2 is used to set the baud rate. Be sure to set switches 3 and 4 OFF. All stations on a remote I/O link must have the same baud rate before the communications will operate properly.

Output Default: DIP switch Position 5 on the slave determines the outputs' response to a communications failure. If DIP switch 5 is ON, the outputs in that slave unit will hold their last state upon a communication error. If OFF, the outputs in that slave unit will turn off in response to an error. The setting does not have to be the same for all the slaves on an output channel.

The selection of the output default mode will depend on your application. You must consider the consequences of turning off all the devices in one or all slaves at the same time vs. letting the system run "steady state" while unresponsive to input changes. For example, a conveyor system would typically suffer no harm if the system were shut down all at once. In a way, it is the equivalent of an "E–STOP". On the other hand, for a continuous process such as waste water treatment, holding the last state would allow the current state of the process to continue until the operator can intervene manually.

WARNING: Selecting "HOLD LAST STATE" as the default mode means that outputs in the remote bases will not be under program control in the event of a communications failure. Consider the consequences to process operation carefully before selecting this mode.

Example Program Using Discrete I/O Modules

Example 1: Using X and Y Addresses as the Remote I/O Memory Types A typical system uses X and Y memory types for the inputs and outputs on the remote I/O channel.

To illustrate the setup program for this configuration, we will use the remote I/O system below, shown with the completed Channel Configuration Worksheet.

The first block of logic tells the CPU the station number of the port, communication V-memory address, and the baud rate setting. Define the constant value based on these selections (see DL250/DL350/DL450 Reserved Memory Table at the end of this chapter), and then write the value to the reserved V-memory address in the CPU. You can also perform this function interactively with **Direct**SOFT (see "Configuring the Bottom Port of the CPU", earlier in this chapter).

Write Port Setup Word

DL350 CPU in Main Base (-1 base addressing)

chapter for more information

4–9

To calculate the input and output addresses and ranges, complete the Remote Slave Worksheets and fill in the V-memory addresses *for each slave*, not just the first one. You can transfer this data to the Channel Configuration Worksheet to condense it, or fill in the Channel Worksheet directly if you choose not to use the Remote Slave Worksheets.

NOTE: Configuring remote I/O for the DL250, DL350 DL450 CPU port requires *both* the starting addresses and the number of input and output points for each slave. The starting addresses for each slave must be on a 16-point boundary. In this example, this means that X250–X257 in Slave # 1 are unused.

Write Input and Output Pointers and Ranges for each remote base

DL250/DL350/DL450 Reserved Memory Table

Once you have written all of the logic to map the starting addresses and point totals for each remote base, you have to zero out all of the reserved memory locations you are not going to use and then tell the CPU that you are finished with the setup. If you don't insert zeros in the unused areas, the CPU will assume that every pointer address V37714 through V37736 is pointing to a read or write start address. This could cause problems; you may have garbage in these locations. At the very least, it will take up unnecessary scan time.

The most efficient method for zeroing out the unused memory is to use LDD and OUTD instructions (load and store double) to clear two consecutive memory locations at a time. The following logic shows how to finish the setup program for this example.

L250/DL350/DL450 CF T1K–RSSS Remote I/(

Completed Setup Program for DL250/DL350/DL450 as Remote Master using X and Y Memory Addressing

Example Program Using Analog I/O Modules

Example 2: Using V Memory Addresses as the Remote I/O Memory Type The following example uses Terminator discrete and analog I/O modules. It is recommended to use V memory addressing when using analog modules since each analog I/O channel uses a double (two) word each. Thus, an 8 channel analog I/O module uses 256 discrete points and a 16 channel analog I/O module uses 512 discrete points. Analog output modules are configured using the Module Control Byte located in the most significant byte of the most significant word of channel 1 of the module. V memory addressing requires the use of "Bit-of-Word" instructions to address the I/O points.

DL250 CPU in Main Base

This block of logic tells the CPU, *for each slave*, the starting V-memory addresses for the inputs and outputs, and the total number of each. Use the values from the Remote Slave Worksheets or Channel Configuration Worksheet and the pointer addresses from the DL250/DL350/DL450 Reserved Memory Table to complete the logic.

Since the rest of the logic is identical to Example 1, we will now show the completed setup program.

Completed Setup Program for DL250/DL350/DL450 as Remote Master using V Memory Addressing

V3002

Completed Setup Program for V–Memory Addressing (con't)

Main Program Body

Main Program Bod	y	V3002 K2000	LD V3000	Loads analog input channel 1 data into the accumulator
Configure T1K–08DA–2 Ar – Bipolar – 0–5VDC	alog Output Module:	Read Positive Analog Input Data	BCD OUT	Use the BCD instruction to convert the- binary analog input data to BCD if necessary to do math or other BCD operations The OUT instructions stores the BCD
Use X, C, etc. permissive contact if needed Analog	g Output Module Control Bits		V3500	data in a new register
SP1 B3101."	0 0= All module outputs OFF 1= All module outputs Enabled	V3002 <u>></u> K2000	LD V3000	Loads analog input channel 1 data into the accumulator
SP0 B3101. Set Analog B3101. Output Module (RST	1 0= Unipolar 1=Bipolar 2 0= 5V Range 1=10V Range	Read Negative Analog Input Data	ADDB K1	The INVERT and ADDB instructions convert the incoming 2's compliment signal data to binary plus sign bit.
Control Bits SP1 Send Data to Analog Output	Analog output data register The BIN instruction converts the accumulator data to binary (omit this step if the conversion is done elsewhere)	K2000 is used above to monitor the channel sign bit. It comes ON if the signal is negative.	ANDD K1FFF OUT V4000 C0 (OUT)	Mask channel sign bit The OUT instructions stores the binary data in a new register. Add a BCD in- struction prior to this OUT instruction if i is necessary to convert to BCD Channel 1 data is negative when C0 is ON
	The OUT instruction sends the data to channel 1 of the analog output module The OUT instruction sends the data to channel 8 of the analog output module	B3030.0	B3130.12 ——(OUT)	Example of discrete remote I/O point addressing

The Control Bits of an Analog Output module are located in the most significant byte of the most significant word of the first output channel (channel 1).

Channel 1 Memory Map of 8&16-Channel Analog Output Module (T1F–08DA, T1F–016DA)										
Decimal Bit	07	06	05	04	03	02	01	00	Sizo	
Octal Bit	07	06	05	04	03	02	01	00	5120	
	Analog Value Channel 1 Write Byte						Write Byte 1			
	Analog Value Channel 1 Write Byte 2									
	not used Write Byte 3				Write Byte 3					
Module Control Byte Write Byte 4			Write Byte 4							

Mod	Module Control Byte of 8&16-Channel Analog Output Module (T1F–08DA, T1F–16DA)								
Decimal Bit	31	30	29	28	27	26	25	24	Road/M/rito
Octal Bit	37	36	35	34	33	32	31	30	Read/white
Bit 24		Outputs Enable 0 = All outputs OFF 1 = All outputs Enabled						Write	
Bit 25	Unipolar / Bipolar 0 = Unipolar selected Write 1 = Bipolar selected					Write			
Bit 26		5V / 10V Range 0 = 5V range 1 = 10V range					Write		
Bit 27		0 – 20mA / 4–20mA Range 0 = 0 – 20mA range 1 = 4 – 20mA range				Write			
Bit 28 – 31		Reserved for system use				-			

DL250/DL350/DL450 Reserved Memory for Bottom Port as Remote Master

This table provides a listing of the reserved memory addresses in the DL250/ DL350/DL450 CPU to program the pointer addresses and ranges for slaves attached to the bottom port of the CPU.

Port S	V7656 V777(DL450)			
Setup	Complete Fla	g		C740
Slave	Input	Number of	Output	Number of
	Address	Input Points	Address	Output Points
Reserved	V37700	V37701	V37702	V37703
1	V37704	V37705	V37706	V37707
2	V37710	V37711	V37712	V37713
3	V37714	V37715	V37716	V37717
4	V37720	V37721	V37722	V37723
5	V37724	V37725	V37726	V37727
6	V37730	V37731	V37732	V37733
7	V37734	V37735	V37736	V37737

DL250/DL350/DL450	Reserved	Memory	Table
-------------------	----------	--------	-------

This table provides a listing of the control relay flags available for the setup and monitoring of remote I/O attached to the bottom port of the DL250, DL350 and DL450 CPU.

Control Relays Used For Remote I/O

FLAG ADDRESS	FUNCTION	DETAIL
C740	Setup Complete Flag	Set ON to command CPU to read and check parameters loaded into setup memory
C741	Communications Error Response Flag	This flag determines the CPU's response if there is a communications error. Set ON to hold last state of received inputs; set OFF to clear the status of the received inputs.

DL250/DL350/DL450 V Memory Port Setup Registers

When configuring the bottom port of the DL250, DL350 or DL450 CPU via *Direct*Soft or the Handheld Programmer, you are actually loading a reserved V-memory adddresses with configuration data. The following diagrams define the meaning of the bits in the registers. The previous ladder logic examples include logic in the setup program to set these parameters so they are not lost or accidentally changed.

Remote I/O Communication Port Settings: DL250/DL350 (V7656); DL450 (V777) 8 7 15 0 LD Kbfc0 = V37700 as starting address pointer, 38.4k baud and address 0 OR * * * * * * * * * * * * * * * * LD K3fc0 = V37700 as starting address pointer. 19.2k baud and address 0 OUT V7656 (V777 for DL450) Station number setting 0 = Master station number Communication V-memory address (hex equivalent of octal adddress) default 37700 is starting address of pointer table Communication baud rate setting 0 = 19.2 kBaud 1 = 38.4 kBaud Port 2 Protocol Setup: DL250/DL350 (V7655) Port 3 Protocol Setup: DL450 (V776) 8 7 0 15 LD K8 = Remote I/O 0 0 0 0 *****|0|0 0 0 0 0 0 0 0 0 0 OUT V7655 (V776 for DL450) 1 = Selects Remote not used for Remote I/O Register Set Code: DL250/DL350 (V7657); DL450 (V767)

Connecting the Wiring

Cabling Between the D2–250 CPU Bottom Port and Slaves The standard remote I/O link is a 3-wire, half-duplex type. Since Port 2 of the DL250 CPU is a 5-wire full duplex-capable port, we must jumper its transmit and receive lines together as shown below (converts it to 3-wire, half-duplex). The recommended cabling for connecting the master and slaves is the single twisted pair cable, Belden 9841 or equivalent. The diagram also depicts the port pinout for the D2–250 CPU bottom port.

The twisted/shielded pair connects to the DL250's Port 2 as shown. Be sure to connect the cable shield wire to the signal ground connection. A termination resistor must be added externally to the CPU, as close as possible to the connector pins. Its purpose is to minimize electrical reflections that occur over long cables. Be sure to add the jumper at the last slave to connect the required internal termination resistor.

Ideally, the two termination resistors at the cable's opposite ends and the cable's rated impedance will all three match. For cable impedances greater than 150 ohms, add a series resistor at the last slave as shown to the right. If less than 150 ohms, parallel a matching resistance across the slave's pins 1 and 2 instead.

to signal ground

T1K-RSSS Remot

The twisted/shielded pair connects to the DL350/DL450's Port as shown. Be sure to connect the cable shield wire to the signal ground connection. A termination resistor must be added externally to the CPU, as close as possible to the connector pins. Its purpose is to minimize electrical reflections that occur over long cables. Be sure to add the jumper at the last slave to connect the required internal termination resistor.

Ideally, the two termination resistors at the cable's opposite ends and the cable's rated impedance will all three match. For cable impedances greater than 150 ohms, add a series resistor at the last slave as shown to the right. If less than 150 ohms, parallel a matching resistance across the slave's pins 1 and 2 instead.

Remember to size the termination resistor at Port 2 (Port 3 DL450) to match the cable's rated impedance. *The resistance values should be between 100 and 500 ohms.*

Internal 150 ohm resistor

Special CPU Memory for Diagnostics

This table provides a listing of the control relay flags available in the DL250/DL350/DL450 for remote I/O troubleshooting.

Remote I/O System Control Relays

FLAG	FUNCTION
ADDRESS	
C750 to C757	Setup Error– The corresponding relay will be ON if the setup table contains an error (C750 =master, C751 = slave 1C757 = slave 7)
C760 to C767	Communications Ready – – The corresponding relay will be ON if the setup table is valid (C760 =master, C751 = slave 1C767 = slave 7)