

SCU-3100

Universal
Trip Amplifier
User Manual

UNIVERSAL TRIP AMPLIFIER

SCU-3100

CONTENTS

Warning 2
Symbol identification 3
Safety instructions 3
How To Detach SCU-3100 5
Advanced features 6
Application 6
Technical characteristics 6
SCU-PDM1 or SCU-PDM2 Display / programming front 7
Mounting / demounting the SCU-PDM1 or SCU-PDM2 8
Applications 9
Part Numbers 10
Electrical specifications 10
Visualization in the SCU-PDM1 or SCU-PDM2 of sensor error detection and input signal outside range 14
Sensor error detection limits. 14
Error indications 15
Connections 16
Block diagram 17
Configuration / operating the function keys 18
Routing diagram 25
Routing diagram
Advanced settings (ADV.SET) 28
Routing diagram
Manual deactivation of the latch function 29
Scrolling help text in display line 3 30
Graphic depiction of latch function setpoint. 31
Graphic depiction of latch function window 32
Graphic depiction of relay action setpoint 33
Graphic depiction of relay action window 33

GENERAL

WARNING

This device is designed for connection to hazardous electric voltages.
Ignoring this warning can result in severe personal injury or mechanical damage.
To avoid the risk of electric shock and fire, the safety instructions of this manual must be observed and the guidelines followed. The specifications must not be exceeded, and the device must only be applied as described in the following.
Prior to the commissioning of the device, this manual must be examined carefully.
Only qualified personnel (technicians) should install this device. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

INSTALLATION

WARNING

To keep the safety distances, the relay contacts on the device must not be connected to both hazardous and non-hazardous voltages at the same time.
SCU-3100 must be mounted on a DIN rail according to DIN 46277.

WARNING

Do not open the front plate of the device as this will cause damage to the connector for the display / programming front SCU-PDM1 or SCU-PDM2. This device contains no DIP-switches or jumpers.

SYMBOL IDENTIFICATION

Triangle with an exclamation mark: Warning / demand. Potentially lethal situations.

The CE mark proves the compliance of the device with the essential requirements of the directives.
\square The double insulation symbol shows that the device is protected by double or reinforced insulation.

SAFETY INSTRUCTIONS

DEFINITIONS

Hazardous voltages have been defined as the ranges: 75 to 1500 Volt DC, and 50 to 1000 Volt AC.
Technicians are qualified persons educated or trained to mount, operate, and also troubleshoot technically correct and in accordance with safety regulations.
Operators, being familiar with the contents of this manual, adjust and operate the knobs or potentiometers during normal operation.

RECEIPT AND UNPACKING

Unpack the device without damaging it. The packing should always follow the device until this has been permanently mounted.
Check at the receipt of the device whether the type corresponds to the one ordered.

ENVIRONMENT

Avoid direct sunlight, dust, high temperatures, mechanical vibrations and shock, as well as rain and heavy moisture. If necessary, heating in excess of the stated limits for ambient temperatures should be avoided by way of ventilation. All devices fall under Installation Category II, Pollution Degree 1, and Insulation Class II.

MOUNTING

Only technicians who are familiar with the technical terms, warnings, and instructions in the manual and who are able to follow these should connect the device. Should there be any doubt as to the correct handling of the device, please contact:

Mounting and connection of the device should comply with national legislation for mounting of electric materials, i.e. wire cross section, protective fuse, and location. Descriptions of input / output and supply connections are shown in the block diagram and side label.

The following apply to fixed hazardous voltages-connected devices:
The max. size of the protective fuse is 10 A and, together with a power switch, it should be easily accessible and close to the device. The power switch should be marked with a label indicating that it will switch off the voltage to the device.

Year of manufacture can be taken from the first two digits in the serial number.
UL INSTALLATION REQUIREMENTS
Use 60/75 ${ }^{\circ}$ Copper conducters only
For use only in pollution degree 2 or better
Max. ambient temperature $60^{\circ} \mathrm{C}$
Max. wire size. AWG 26-14
UL file number E191072

CALIBRATION AND ADJUSTMENT

During calibration and adjustment, the measuring and connection of external voltages must be carried out according to the specifications of this manual. The technician must use tools and instruments that are safe to use.

NORMAL OPERATION

Operators are only allowed to adjust and operate devices that are safely fixed in panels, etc., thus avoiding the danger of personal injury and damage. This means there is no electrical shock hazard, and the device is easily accessible.

CLEANING

When disconnected, the device may be cleaned with a cloth moistened with distilled water.

HOW TO DETACH SCU-3100

First, remember to demount the connectors with hazardous voltages.

Picture 1:
Detach the device from the DIN rail by lifting the bottom lock.

UNIVERSAL TRIP AMPLIFIER SCU-3100

- Input for RTD, TC, Ohm, potentiometer, mA and V
- 2 adjustable alarm limits
- FM-approved for installation in Div. 2
- 2 relay outputs
- Universal AC or DC supply

Advanced features

- Programmable via detachable display front (SCU-PDM1 or SCU-PDM2), process calibration, relay simulation, password protection, error diagnostics and selection of help text in several languages.

Application

- Process control with 2 pairs of potential-free relay contacts which can be configured to suit any application.
- Trip amplifier with window function allowing the relay to change state within a high and a low setpoint on the input span.
- Relay latch function, where the relay is activated and can only be reset manually.
- Sophisticated sensor error surveillance, where one relay holds the state immediately prior to the sensor error, thus allowing the process to continue. The other relay can be set for sensor error alarm so that the defect sensor can be replaced immediately.

Technical characteristics

- When SCU-3100 is used in combination with the SCU-PDM1 or SCU-PDM2 display / programming front, all operational parameters can be modified to suit any application. As the SCU-3100 is designed with electronic hardware switches, it is not necessary to open the device for setting of DIP-switches.
- A green front LED indicates normal operation and malfunction. A yellow LED is ON for each active output relay.
- Continuous check of vital stored data for safety reasons.
- 3-port 2.3 kVAC galvanic isolation.

SCU-PDM1 OR SCU-PDM2 DISPLAY / PROGRAMMING FRONT

Functionality

The simple and easily understandable menu structure and the explanatory help texts guide you effortlessly and automatically through the configuration steps, thus making the product very easy to use. Functions and configuration options are described in the section "Configuration / operating the function keys". SCU-PDM2 may vary slightly in appearance.

SCU-PDM1 SCU-PDM2

Application

- Communications interface for modification of operational parameters in SCU3100.
- Can be moved from one SCU-3100 device to another and download the configuration of the first transmitter to subsequent transmitters.
- Fixed display for readout of process data and status.

Technical characteristics

- SCU-PDM1 LCD display with 4 lines; Line 1 ($\mathrm{H}=5.57 \mathrm{~mm}$) shows input signal, line $2(\mathrm{H}=3.33 \mathrm{~mm})$ shows units, line $3(\mathrm{H}=3.33 \mathrm{~mm})$ shows analogue output or tag no. and line 4 shows communication status.
- SCU-PDM2 LCD display with 4 lines; Line 1 ($\mathrm{H}=5 \mathrm{~mm}$) shows input signal, line 2 ($\mathrm{H}=3.5 \mathrm{~mm}$) shows units, line $3(\mathrm{H}=3.35 \mathrm{~mm})$ shows analogue output or tag no. and line 4 shows communication status.
- Programming access can be blocked by assigning a password. The password is saved in the transmitter in order to ensure a high degree of protection against unauthorized modifications to the configuration.

Mounting / installation

- Click SCU-PDM1 or SCU-PDM2 onto the front of SCU-3100.

MOUNTING / DEMOUNTING THE SCU-PDM1 OR

 SCU-PDM21: Insert the taps of SCU-PDM1 or SCU-PDM2 into the holes at the top of the device.
2: Swing SCU-PDM1 or SCU-PDM2 into place.

Demounting of SCU-PDM1 or SCU-PDM2

3: Push the release button on the bottom of SCU-PDM1 or SCU-PDM2 and swing SCU-PDM1 or SCU-PDM2 up.

WARNING

The SCU-PDM2 is NOT approved for use in Hazardous Locations.

APPLICATIONS

Input signals:

Output signals:
*Order separately: SCU-CJC1 Optional External CJC connector. See the connection drawing on page 16.

Relays

Supply:

Part Numbers

SCU-3100 = Universal trip amplifier
 SCU-PDM1 or SCU-PDM2 = Display / programming front SCU-CJC1 = Optional External CJC connector

Electrical specifications

Environmental conditions
Specifications range.. $-20^{\circ} \mathrm{C} . . .60^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} . . .140^{\circ} \mathrm{F}\right)$

Relative humidity... < 95\% RH (non-cond.)
Protection degree.. IP20

Mechanical specifications
 Dimensions (HxWxD) .. $109 \times 23.5 \times 104 \mathrm{~mm}$ ($4.3 \times 0.9 \times 4.1 \mathrm{in}$)

Dimensions, with SCU-PDM1 or SCU-PDM2 (HxWxD)
$109 \times 23.5 \times 116 / 131 \mathrm{~mm}$ (SCU-PDM1) or 144 mm (SCU-PDM2)
[4.3 $\times 0.9 \times 4.6 / 5.2$ in (SCU-PDM1) or 5.67 in (SCU-PDM2)]
Weight 170 g
Weight with SCU-PDM1 or SCU-PDM2........... $185 \mathrm{~g} / 270 \mathrm{~g}$
Max. wire size... $1 \times 2.5 \mathrm{~mm}^{2}$ (14 AWG) stranded wire
Screw terminal torque $0.5 \mathrm{Nm}(0.37 \mathrm{ft} \mathrm{Ib})$
Vibration
IEC 60068-2-6 : 2007
2...13.2 Hz.. $\pm 1 \mathrm{~mm}$
13.2 ... 100 Hz .. $\pm 0.7 \mathrm{~g}$

Common specifications

Supply voltage, universal................................. 21.6... 253 VAC, $50 . . .60 \mathrm{~Hz}$
or 19.2... 300 VDC
Max. consumption.. $\leq 2.0 \mathrm{~W}$
Fuse.. 400 mA SB / 250 VAC
Isolation voltage, test / operation................... 2.3 kVAC / 250 VAC
Communications interface Programming /display module,
SCU-PDM2 (sold separately) or SCU-PDM1 (discontinued and replaced by SCU-PDM2)
Signal / noise ratio ... Min. 60 dB (0... 100 kHz)

> Response time (0...90\%, 100...10\%): \quad Temperature input.. 400 ms $\mathrm{~mA} / \mathrm{V}$ input..............

Accuracy, the greater of the general and basic values:

General values		
Input type	Absolute accuracy	Temperature coefficient
All	$\leq \pm 0.1 \%$ of span	$\leq \pm 0.01 \%$ of span $/{ }^{\circ} \mathrm{C}$

Basic values		
Input type	Basic accuracy	Temperature coefficient
mA	$\leq \pm 4 \mu \mathrm{~A}$	$\leq \pm 0.4 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Volt	$\leq \pm 20 \mu \mathrm{~V}$	$\leq \pm 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Pt100	$\leq \pm 0.2^{\circ} \mathrm{C}$	$\leq \pm 0.01^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
Linear resistance	$\leq \pm 0.1 \Omega$	$\leq \pm 0.01 \Omega /{ }^{\circ} \mathrm{C}$
Potentiometer	$\leq \pm 0.1 \Omega$	$\leq \pm 0.01 \Omega /{ }^{\circ} \mathrm{C}$
TC type: E, J, K, L, N, T, U	$\leq \pm 1^{\circ} \mathrm{C}$	$\leq \pm 0.05^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
TC type: R, S, W3, W5, LR	$\leq \pm 2^{\circ} \mathrm{C}$	$\leq \pm 0.2^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
TC type: B $85 . . .200^{\circ} \mathrm{C}$	$\leq \pm 4^{\circ} \mathrm{C}$	$\leq \pm 0.4^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$
TC type: B $200 . . .1820^{\circ} \mathrm{C}$	$\leq \pm 2^{\circ} \mathrm{C}$	$\leq \pm 0.2^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$

| EMC immunity influence... $< \pm 0.5 \%$ of span |
| :--- | :--- |
| Extended EMC immunity: |
| NAMUR NE 21, A criterion, burst.............................. $< \pm 1 \%$ of span |

Auxiliary supplies:
2-wire supply (terminal 44...43)...................... 25... 16 VDC / 0... 20 mA

RTD, linear resistance and potentiometer input

Input for RTD types:
Pt10, Pt20, Pt50, Pt100, Pt200, PT250, Pt300, Pt400, Pt500, Pt1000 Ni50, Ni100, Ni120, Ni1000, Cu10, Cu20, Cu50, Cu100

Input type	Min. value	Max. value	Standard
Pt10...Pt1000	$-200^{\circ} \mathrm{C}$	$+850^{\circ} \mathrm{C}$	IEC 60751
Ni50...Ni1000	$-60^{\circ} \mathrm{C}$	$+250^{\circ} \mathrm{C}$	DIN 43760
Cu10...Cu100	$-200^{\circ} \mathrm{C}$	$+260^{\circ} \mathrm{C}$	$\alpha=0.00427$
Lin. R	0Ω	10000Ω	-
Potentiometer	10Ω	$100 \mathrm{k} \Omega$	-
Cable resistance per wire (max.), RTD............. 50Ω			
Sensor current, RTD....................................... Nom. 0.2 mA			
(3- / 4-wire), RTD ..			2 / Ω
Sensor error detection, RTD.............................			
Short circuit detection, RTD < 15Ω			

TC input

Type	Min. value	Max. value	Standard
B	$0^{\circ} \mathrm{C}$	$+1820^{\circ} \mathrm{C}$	IEC 60584-1
E	$-100^{\circ} \mathrm{C}$	$+1000^{\circ} \mathrm{C}$	IEC 60584-1
J	$-100^{\circ} \mathrm{C}$	$+1200^{\circ} \mathrm{C}$	IEC 60584-1
K	$-180^{\circ} \mathrm{C}$	$+1372^{\circ} \mathrm{C}$	IEC 60584-1
L	$-200^{\circ} \mathrm{C}$	$+900^{\circ} \mathrm{C}$	DIN 43710
N	$-180^{\circ} \mathrm{C}$	$+1300^{\circ} \mathrm{C}$	IEC 60584-1
R	$-50^{\circ} \mathrm{C}$	$+1760^{\circ} \mathrm{C}$	IEC 60584-1
S	$-50^{\circ} \mathrm{C}$	$+1760^{\circ} \mathrm{C}$	IEC 60584-1
T	$-200^{\circ} \mathrm{C}$	$+400^{\circ} \mathrm{C}$	IEC 60584-1
U	$-200^{\circ} \mathrm{C}$	$+600^{\circ} \mathrm{C}$	DIN 43710
W3	$0^{\circ} \mathrm{C}$	$+2300^{\circ} \mathrm{C}$	ASTM E988-90
W5	$0^{\circ} \mathrm{C}$	$+2300^{\circ} \mathrm{C}$	ASTM E988-90
LR	$-200^{\circ} \mathrm{C}$	$+800^{\circ} \mathrm{C}$	GOST 3044-84

Cold junction compensation (CJC):	
via external sensor in connector SCU-CJC1	$20 . . .28^{\circ} \mathrm{C} \leq \pm 1^{\circ} \mathrm{C}$ $-20.20^{\circ} \mathrm{C} / 28 \quad 70^{\circ} \mathrm{C}<+2^{\circ} \mathrm{C}$
via internal CJC sensor	$\pm\left(2.0^{\circ} \mathrm{C}+0.4^{\circ} \mathrm{C} * \Delta \mathrm{t}\right)$
$\Delta \mathrm{t}=$ internal temperature - ambient temperature	
Sensor error detection, all TC types............... Yes	
Sensor error current: when detecting else	Nom. $2 \mu \mathrm{~A}$
Current input	
Measurement range... $0 . . .20 \mathrm{~mA}$	
Programmable measurement ranges.............. 0... 20 and 4... 20 mA	
Input resistance.. Nom. $20 \Omega+\mathrm{PTC} 50 \Omega$	
Sensor error detection:	
Voltage input	
Measurement range	0...12 VDC
Programmable measurement ranges..............	$\begin{aligned} & 0 . . .1 \text { / } 0.2 \ldots . .1 \text { / } 0 . . .5 \text { / } 1 . . .5 \text { / } \\ & 0 . . .10 \text { and 2... } 10 \text { VDC } \end{aligned}$
Input resistance.	Nom. $10 \mathrm{M} \Omega$

Relay outputs
Relay functions Setpoint, Window, Sensor error, Latch, Power and Off
Hysteresis 0...100\%
On and Off delay $0 . . .3600$ s
Sensor error detection Break / Make / Hold
Max. voltage 250 VRMS
Max. current. 2 A / AC or 1 A / DC
500 VA
I.S. approval
FM, applicable in.

\qquad
Class I, Div. 2, Group A, B, C, D Class I, Div. 2, Group IIC
Zone 2 (when SCU-PDM2 is not
attached). The SCU-PDM2 is NOT approved for use in Hazardous Locations.Max. ambient temperature for T5$60^{\circ} \mathrm{C}$
Observed authority requirements Standard
EMC 2004/108/EC EN 61326-1
LVD 2006/95/EC EN 61010-1
FM 3600, 3611, 3810 and ISA 61010-1
UL, Standard for Safety UL 508
of span $=$ of the currently selected measurement range

Visualization in the SCU-PDM1 or SCU-PDM2 of sensor error detection and input signal outside range

Sensor error check:		
Device:	Configuration	Sensor error detection:
SCU-	R1, ERR.ACT=NONE - R2, ERR.ACT=NONE	OFF
3100	Else:	ON

Outside range readout (IN.LO, IN.HI): If the valid range of the A/D converter or the polynomial is exceeded			
Input	Range	Readout	Limit
VOLT	$0 . . .1 \mathrm{~V} / 0.2 \ldots . .1 \mathrm{~V}$	IN.LO	<-25 mV
		IN.HI	> 1.2 V
	$0 . . .10 \mathrm{~V} / 2 . . .10 \mathrm{~V}$	IN.LO	$<-25 \mathrm{mV}$
		IN.HI	> 12 V
CURR	0... $20 \mathrm{~mA} / 4 . . .20 \mathrm{~mA}$	IN.LO	<-1.05 mA
		IN.HI	> 25.05 mA
LIN.R	$0 . . .800 \Omega$	IN.LO	< 0Ω
		IN.HI	$>1075 \Omega$
	0... $10 \mathrm{k} \Omega$	IN.LO	$<0 \Omega$
		IN.HI	$<110 \mathrm{k} \Omega$
POTM	-	IN.LO	<-0.5 \%
		IN.HI	> 100.5 \%
TEMP	TC / RTD	IN.LO	< temperature range $-2^{\circ} \mathrm{C}$
		IN.HI	> temperature range $+2^{\circ} \mathrm{C}$

Display readout below min.- / above max. (-1999, 9999):			
Input	Range	Readout	Limit
All	All	-1999	Display readout <-1999
		9999	Display readout >9999

Sensor error detection limits

Sensor error detection (SE.BR, SE.SH):			
Input	Range	Readout	Limit
CURR	Loop break (4.20 mA)	SE.BR	$<=3.6 \mathrm{~mA} ;>=21 \mathrm{~mA}$
POTM	All, SE.BR on all 3-wire	SE.BR	$>\mathrm{ca} .126 \mathrm{k} \Omega$
LIN.R	$0 . . .800 \Omega$	SE.BR	$>\mathrm{ca} .875 \Omega$
	$0 . .10 \mathrm{k} \Omega$	SE.BR	$>\mathrm{ca} .11 \mathrm{k} \Omega$
TEMP	TC	SE.BR	$>\mathrm{ca} .750 \mathrm{k} \Omega /(1.25 \mathrm{~V})$
	No SE.SH for Cuxx, Pt10, Pt20 and Pt50	SE.BR	$>\mathrm{ca} .15 \mathrm{k} \Omega$
	SE.SH	$<\mathrm{ca} .15 \Omega$	

Error indications

Readout at hardware error		
Error search	Readout	Error cause
Test of internal CJC sensor	CJ.ER	CJC sensor defect or tem- perature outside range
Checksum test of the configuration in FLASH	FL.ER	Error in FLASH
Communications test SCU-PDM1 or SCU-PDM2 / SCU-3100	NO.CO	Connection error
Check that input signal matches input configuration	IN.ER	1) Error levels on input
Check that saved configuration in SCU-PDM1 or SCU-PDM2 matches device	TY.ER	Configuration is not SCU- 3100

! Error indications in the display flash once per second. The help text explains the error.

1) The error is reset by switching off and then switching on the supply voltage to the device.

CONNECTIONS

Supply:

Inputs:

*TC, CJC connector

* Order separately:

Optional External CJC connector SCU-CJC1

Outputs:

Relays

BLOCK DIAGRAM

CONFIGURATION / OPERATING THE FUNCTION KEYS

Documentation for routing diagram.

In general

When configuring the SCU-3100, you will be guided through all parameters and you can choose the settings which fit the application. For each menu there is a scrolling help text which is automatically shown in line 3 on the display.
Configuration is carried out by use of the 3 function keys:
© will increase the numerical value or choose the next parameter
\otimes will decrease the numerical value or choose the previous parameter
© will accept the chosen value and proceed to the next menu
When configuration is completed, the display will return to the default state 1.0.
Pressing and holding © will return to the previous menu or return to the default state (1.0) without saving the changed values or parameters.
If no key is activated for 1 minute, the display will return to the default state (1.0) without saving the changed values or parameters.

Further explanations

Fast setpoint adjustment and relay test: These menus allow you to make a quick setpoint change and relay test when the FastSet menu is activated. This function can only be activated when the relays are set for setpoint function and are controlled by a setpoint.
Pressing \otimes and \otimes simultaneously will activate a relay test and change the state of the relay.
Pressing © will save the setpoint change.
Holding down ® for more than 1 second will return the unit to the default state without saving the setpoint change.
Password protection: Programming access can be blocked by assigning a password. The password is saved in the transmitter in order to ensure a high degree of protection against unauthorised modifications to the configuration.

Signal and sensor error info via display front SCU-PDM1 or SCU-PDM2

Sensor error (see limits in the table) is displayed as SE.BR (sensor break) or SE.SH (sensor short). Signals outside the selected range (not sensor error, see table for limits) are displayed as IN.LO indicating low input signal or IN.HI indicating high input signal. The error indication is displayed in line 3 as text and at the same time the backlight flashes. Line 4 of the display is a status line which displays status of relay 1 and relay 2, COM (flashing bullet) indicating correct functioning of SCU-PDM1 or SCU-PDM2 and arrow up/down which indicates tendency readout of the input signal. If the figure 1 or figure 2 flashes, the unit has detected that the setpoint has been exceeded and that the relay is in "delay" mode. When the delay time has passed and the relay makes/breakes, the relay sign either displays or disappears.

Signal and sensor error indication without display front

Status of the unit can also be read from the green LED in the front of the device.
Green flashing LED 13 Hz indicates normal operation.
Green flashing LED 1 Hz indicates sensor error.
Steady green LED indicates internal error.

Relay functions

6 different settings of relay function can be selected.

Setpoint:	The unit works as a single limit switch
Window:	The relay has a window that is defined by a low and a high
	setpoint. On both sides of the window the relay has the
	same status.

Error function: The relay is activated by sensor error.
Power: \quad The relay is activated as long as the power is on.
Off: \quad The relay is deactivated.
Latch: \quad The relay is latched. Only valid for setpoint and window function.
Increasing/decreasing: The relays can be set to activate at increasing or decreasing input signal.
Delay: An ON and an OFF delay can be set on both relays in the range $0 . . .3600 \mathrm{~s}$.

Hysteresis: 0.0...100.0\%.

Latch

When the setpoint is exceeded the relay outputs enters an alarm state. The latch function of the SCU-3100 will hold the relays in this state until the function is deactivated manually. The latch function can be applied when the relay function setpoint or window is selected.
The latch function can be selected separately for each relay output. If the configuration is copied from one device to another by way of the SCU-PDM1 or SCU-PDM2, the latch function must be reconfigured.
The latch function activates and holds the relays when the input signal rises above or falls below the selected setpoints and the relay action has been selected as increasing or decreasing.
The window function is selected by choosing "window" in the menu and defining a high and a low setpoint.
It can be selected for each relay contact whether the contact is open or closed inside the window. This selection is made in the menu R1.cont and R2.cont.
The setpoint function is selected by choosing "setpoint" in the menu and entering the desired limit. The device then works as a single limit switch.
An activated relay means that the contact is closed if the contact function "normally open" is selected, and the contact is open if the contact function "normally closed" is selected.
The delay time for activation and deactivation can be set independently of each other in the menus ON.DEL and OFF DEL respectively.
If the relay function "Error" is active, the relay will latch when a sensor error occurs and will not be deactivated automatically when the sensor error is rectified.
The relay can only be deactivated by an operator and only when the normal conditions for deactivation are met. If the input signal still has a value that will activate the relay, the relay will latch again.
See the graphic depiction of the setpoint and window functions on pages 31 and 32.

Manual deactivation of the latch function

If the relay outputs are activated and thereby latched, it will be indicated in the display. The backlight flashes and the scrolling help text tells you how to deactivate the output. Manual deactivation is carried out by way of the front buttons on the SCU-PDM1 or SCU-PDM2. Use \star and \otimes to navigate in the menu and ® to validate your selection. If the password protection has been activated, the password must be entered in order to access the deactivation menu. See the menu structure on page 29.

Advanced functions

The device gives access to a number of advanced functions which can be reached by answering "Yes" to the point "adv.set".
Display setup: Here you can adjust the brightness contrast and the backlight. Setup of TAG numbers with 6 alphanumerics. Line 3 of the display shows TAG number.

Two-point process calibration: The device can be process-calibrated in 2 points to fit a given input signal . A low input signal (not necessarily 0\%) is applied and the actual value is entered via SCU-PDM1 or SCU-PDM2. Then a high signal (not necessarily 100\%) is applied and the actual value is entered via SCUPDM1 or SCU-PDM2. If you accept to use the calibration, the device will work according to this new adjustment. If you later reject this menu point or choose another type of input signal the device will return to factory calibration.
Process simulation function: If you say "yes" to the point "EN.SIM" it is possible to simulate an input signal by means of the arrow keys and thus test the function of the relays. When you finalise the point with œ, the unit returns to normal mode. The point REL.SIM allows you to activate relay 1 and relay 2 by means of the arrow-keys up/down. You must exit the menu by pressing ® (no time-out).
Password: Here you can choose a password between 0000 and 9999 in order to protect the device against unauthorized modifications to the configuration. The device is delivered default without password.
Language: In the menu "lang.setup" you can choose between 7 different language versions of help texts that will appear in the menu. You can choose between UK, DE, FR, IT, ES, SE and DK.

Auto diagnosis

The device performs an advanced auto diagnosis of the internal circuits.
The following possible errors can by displayed in the front unit SCU-PDM1 or SCU-PDM2.
CJ.ER - CJC sensor defect or CJC temperature outside range
FL.ER - Flash error
NO.CO - Connection error
IN.ER - Error levels on input
TY.ER - Configuration in SCU-PDM1 or SCU-PDM2 does not match this product type

Selection of units

After choosing the input signal type you can choose which process units should be displayed in text line 2 (see table). By selection of temperature input the process value is always displayed in Celsius or Fahrenheit. This is selected in the menu point after selection of temperature input.

CJC

In the CJC menu you can choose between CJC connector and internal cold junction compensation. The CJC connecter (SCU-CJC1) must be ordered separately.

Memory

In the memory menu you can save the configuration of the device in the SCUPDM1 or SCU-PDM2, and then move the SCU-PDM1 or SCU-PDM2 onto another device of the same type and download the configuration in the new device.

Power up

ROUTING DIAGRAM

If no key is activated for 1 minute, the display will return to the default state 1.0 without saving configuration changes.
© Increase value / choose next parameter
\diamond Decrease value / choose previous parameter
® Accept the chosen value and proceed to the next menu Hold ® Back to previous menu / return to menu 1.0 without saving

ROUTING DIAGRAM

Advanced settings (ADV.SET)

ROUTING DIAGRAM

Manual deactivation of the latch function

SCROLLING HELP TEXT IN DISPLAY LINE 3

[01] Set correct password
[02] Enter advanced setup menu?
[03] Select temperature input Select potentiometer input
Select linear resistance input
Select current input
Select voltage input
[04] Select 0.0-1 V input range
Select 0.2-1 V input range
Select 0-5 V input range
Select 1-5 V input range
Select 0-10 V input range
Select 2-10 V input range
[05] Select 0-20 mA input range Select 4-20 mA input range
[06] Select 2-wire sensor connection
Select 3-wire sensor connection
Select 4-wire sensor connection
[07] Set resistance value low
[08] Set resistance value high
[09] Select Celsius as temperature unit
Select Fahrenheit as temperature unit
[10] Select TC sensor type
Select Ni sensor type
Select Pt sensor type
Select Cu sensor type
[11] Select display unit
[12] Select decimal point position
[13] Set display range low
[14] Set display range high
[15] Set relays in \% of input range
Set relays in display units
[16] Select Pt10 as sensor type
Select Pt20 as sensor type
Select Pt50 as sensor type
Select Pt100 as sensor type
Select Pt200 as sensor type
Select Pt250 as sensor type
Select Pt300 as sensor type
Select Pt400 as sensor type
Select Pt500 as sensor type
Select Pt1000 as sensor type
[17] Select Ni50 as sensor type
Select Ni100 as sensor type
Select Ni120 as sensor type
Select Ni1000 as sensor type
[69] Select Cu10 as sensor type
Select Cu20 as sensor type
Select Cu50 as sensor type
Select Cu100 as sensor type
[18] Select TC-B as sensor type
Select TC-E as sensor type
Select TC-J as sensor type
Select TC-K as sensor type
Select TC-L as sensor type
Select TC-N as sensor type
Select TC-R as sensor type
Select TC-S as sensor type
Select TC-T as sensor type
Select TC-U as sensor type
Select TC-W3 as sensor type
Select TC-W5 as sensor type
Select TC-Lr as sensor type
[19] Select OFF function - relay is permanently off Select POWER function - relay indicates power status OK

Select ERROR function - relay indicates sensor error only
Select WINDOW function - relay controlled by 2 setpoints
Select SETPOINT function - relay controlled by 1 setpoint
[20] Select Normally Closed contact
Select Normally Open contact
[21] Set relay setpoint
[22] Activate relay on decreasing signal
Activate relay on increasing signal
[23] Set relay hysteresis
[24] No error action - undefined status at error
Open relay contact at error
Close relay contact at error
Hold relay status at error
[25] Set relay ON delay in seconds
[26] Set relay OFF delay in seconds
[27] Relay contact is Closed Inside Window Relay contact is Open Inside Window
[28] Set relay window setpoint high
[29] Set relay window setpoint low
[30] Set relay window hysteresis
[31] No error action - undefined status at error Open relay contact at error Close relay contact at error Hold relay status at error
[32] Set relay ON delay in seconds
[33] Set relay OFF delay in seconds
[34] Open relay contact at error Close relay contact at error
[43] Enter password setup
Enter simulation mode
Perform process calibration
Enter display setup
Perform memory operations
Enter relay latch setup
[44] Load saved configuration into SCU-3100
Save SCU-3100 configuration in SCU-PDM1 or SCU-PDM2
[45] Adjust LCD contrast
[46] Adjust LCD backlight
[47] Write a 6-character device TAG
[49] Calibrate input low to process value?
[50] Calibrate input high to process value?
[51] Enable simulation mode?
[52] Set the input simulation value
[53] Relay simulation - use Δ and \vee to toggle relay $1 \& 2$
[54] Enable password protection?
[55] Set new password
[56] Enable Fastset functionality?
[57] Relay setpoint - press or to save
[58] Relay setpoint - Read only
[59] Select language
[60] Use process calibration values?
[61] Set value for low calibration point
[62] Set value for high calibration point
[63] Select CJC connector (accessory)
Select internal temperature sensor
[64] Enable relay latch function?
[65] Relay is latched - press or to acknowledge
Relay(s) are latched - press Δ or \diamond for release relay
1 or relay 2
[66] Release relay? (if conditions allow)
[67] Enter setup menu? (latched relays may release!)

Graphic depiction of latch function setpoint

Graphic depiction of latch function window

Graphic depiction of relay action setpoint

Graphic depiction of relay action window

Relay function: Window (shown for increasing signal)
Contact: Closed inside window $=$ (1)

Relay function: Window (shown for decreasing signal)
Contact: Closed inside window $=$ (1)
Contact: Open inside window $=$ (2)

