AutomationDirect
Search
Login | Register
Accounts & Orders
Cart
0
$0.00

Recent Orders

View and Manage | Request Cancellation

Your Account

Account Home

Checkout   $0.00


  • My Orders
  • Product Returns (RMAs)
  • Pay Proforma Invoices
  • Pay Freights
  • Invoices / Invoice Reprint
  • Quotes / Favs / BOMs
  • Packing List Reprint
  • My Product Docs
  • Credit Application
  • Tax Exemption
| Direct Sales in US and Canada | 1-800-633-0405 | About Us | Contact Us | Line Card
Products | Support
| Compare
  
Ordering Tools  
warning Cookies are not enabled on your browser.
Cookies are required for our site. Please enable cookies in your browser preferences to continue.
+
Navigation
+
Shopping Categories
  • Barcode / RFID / Vision
  • Bulk Wire & Cable
  • Cables (Terminated)
  • Circuit Protection / Fuses / Disconnects
  • Communications
  • Drives & Soft Starters
  • Enclosure Thermal Management & Lights
  • Enclosures & Racks
  • Field I/O
  • HMI (Human Machine Interface)
  • Hydraulic Components
  • Motion Control
  • Motor Controls
  • Motors
  • Pneumatic Components
  • Power Products (Electrical)
  • Power Transmission (Mechanical)
  • Process Control & Measurement
  • Programmable Controllers
  • Pushbuttons / Switches / Indicators
  • Relays / Timers
  • Safety
  • Sensors / Encoders
  • Stacklights
  • Structural Frames / Rails
  • Tools & Test Equipment
  • Valves
  • Water (Potable) Components
  • Wiring Solutions
  • Retired Products
+
Learn More
  • Brand Line Card
  • What's New
  • E-newsletter
  • Online PDF Catalog
  • Video Tutorials
  • Company Reviews
  • Learning Library
  • Affordable Training
  • Free Online PLC training
  • Cybersecurity
+
In Depth Product Sites
  • Programmable Logic Controllers
  • Productivity1000 PLCs
  • Productivity2000 PLCs
  • Productivity3000 PLCs
  • ProductivityCODESYS
  • LS Electric XGB Series PLCs
  • ProductivityOpen
  • CLICK PLCs
  • Do-more H2 PLCs or
    Do-more T1H Series
  • Do-more BRX PLCs
  • C-more Touch Panels
  • AC & DC Drives
  • Motion Control Components
  • Servos
  • StrideLinx
  • Pneumatics
+
Product Selectors &
Configuration Utilities
  • PLC Family Selector
  • P1000 PLC Systems
  • P2000 PLC Systems
  • P3000 PLC Systems
  • ProductivityCODESYS
  • CLICK PLC Systems
  • Do-more® BRX PLC Systems
  • LS-Electric® XGB PLC Systems
  • Productivity®Open Systems
  • AC Motors
  • Datalogic® Safety Light Curtains
  • LS-Electric® Servo Systems
  • Nitra® Pneumatic Grippers
  • Object Detection (Sensors)
  • PAL Controller Configurator
  • Precision Gearbox Selector
  • Protos X® Field I/O
  • Quadritalia® Modular Enclosures
  • Stellar® Soft Starters
  • Stepper System Selector
  • SureFrame T-slot Extrusion
  • SureMotion® XYZ Gantry
  • SureServo2® System Selector
  • SureStep® Linear Actuators
  • Timing Belts & Pulleys
  • Werma® Stacklights
  • ZIPLinks

SureServo2 Position Register Mode (PR Mode) Triggering from AutomationDirect


Related Products

SV2A-2040
SV2A-2040 Thumbnail
SV2A-2075
SV2A-2075 Thumbnail
SV2A-2150
SV2A-2150 Thumbnail
SV2A-2200
SV2A-2200 Thumbnail
SV2A-2300
SV2A-2300 Thumbnail
SV2A-2550
SV2A-2550 Thumbnail
SV2A-2750
SV2A-2750 Thumbnail
SV2A-2F00
SV2A-2F00 Thumbnail
SV2L-201N
SV2L-201N Thumbnail
SV2L-201B
SV2L-201B Thumbnail
SV2L-202N
SV2L-202N Thumbnail
SV2L-202B
SV2L-202B Thumbnail
SV2L-204N
SV2L-204N Thumbnail
SV2L-204B
SV2L-204B Thumbnail
SV2L-207N
SV2L-207N Thumbnail
SV2L-207B
SV2L-207B Thumbnail
SV2L-210N
SV2L-210N Thumbnail
SV2L-210B
SV2L-210B Thumbnail
SV2M-210N
SV2M-210N Thumbnail
SV2M-210B
SV2M-210B Thumbnail
SV2H-255B
SV2H-255B Thumbnail
SV2H-255N
SV2H-255N Thumbnail
SV2H-245B
SV2H-245B Thumbnail
SV2H-245N
SV2H-245N Thumbnail
SV2M-230B
SV2M-230B Thumbnail
SV2M-230N
SV2M-230N Thumbnail
SV2M-220B
SV2M-220B Thumbnail
SV2M-220N
SV2M-220N Thumbnail
SV2M-215B
SV2M-215B Thumbnail
SV2M-215N
SV2M-215N Thumbnail
SV2H-275N
SV2H-275N Thumbnail
SV2H-275B
SV2H-275B Thumbnail
SV2H-2B0N
SV2H-2B0N Thumbnail
SV2H-2B0B
SV2H-2B0B Thumbnail
SV2H-2F0N
SV2H-2F0N Thumbnail
SV2H-2F0B
SV2H-2F0B Thumbnail
SV2C-PA18-03FN
SV2C-PA18-03FN Thumbnail
SV2C-PA18-05FN
SV2C-PA18-05FN Thumbnail
SV2C-PA18-10FN
SV2C-PA18-10FN Thumbnail
SV2C-PA18-20FN
SV2C-PA18-20FN Thumbnail
SV2C-PB18-05NB
SV2C-PB18-05NB Thumbnail
SV2C-PB18-03NB
SV2C-PB18-03NB Thumbnail
SV2C-PB18-20FB
SV2C-PB18-20FB Thumbnail
SV2C-PB18-10FB
SV2C-PB18-10FB Thumbnail
SV2C-PB18-05FB
SV2C-PB18-05FB Thumbnail
SV2C-PB18-03FB
SV2C-PB18-03FB Thumbnail
SV2C-PA18-20NN
SV2C-PA18-20NN Thumbnail
SV2C-PA18-10NN
SV2C-PA18-10NN Thumbnail
SV2C-PA18-05NN
SV2C-PA18-05NN Thumbnail
SV2C-PA18-03NN
SV2C-PA18-03NN Thumbnail
SV2C-PB18-10NB
SV2C-PB18-10NB Thumbnail
SV2C-PB18-20NB
SV2C-PB18-20NB Thumbnail
SV2C-PC16-03FN
SV2C-PC16-03FN Thumbnail
SV2C-PC16-05FN
SV2C-PC16-05FN Thumbnail
SV2C-PC16-10FN
SV2C-PC16-10FN Thumbnail
SV2C-PC16-20FN
SV2C-PC16-20FN Thumbnail
SV2C-PC16-03NN
SV2C-PC16-03NN Thumbnail
SV2C-PC16-05NN
SV2C-PC16-05NN Thumbnail
SV2C-PC16-10NN
SV2C-PC16-10NN Thumbnail
SV2C-PC16-20NN
SV2C-PC16-20NN Thumbnail
SV2C-PC12-05FN
SV2C-PC12-05FN Thumbnail
SV2C-PC12-03FN
SV2C-PC12-03FN Thumbnail
SV2C-PC16-20NB
SV2C-PC16-20NB Thumbnail
SV2C-PC16-10NB
SV2C-PC16-10NB Thumbnail
SV2C-PC16-05NB
SV2C-PC16-05NB Thumbnail
SV2C-PC16-03NB
SV2C-PC16-03NB Thumbnail
SV2C-PC16-20FB
SV2C-PC16-20FB Thumbnail
SV2C-PC16-10FB
SV2C-PC16-10FB Thumbnail
SV2C-PC16-05FB
SV2C-PC16-05FB Thumbnail
SV2C-PC16-03FB
SV2C-PC16-03FB Thumbnail
SV2C-PC12-10FN
SV2C-PC12-10FN Thumbnail
SV2C-PC12-20FN
SV2C-PC12-20FN Thumbnail
SV2C-PC12-03NN
SV2C-PC12-03NN Thumbnail
SV2C-PC12-05NN
SV2C-PC12-05NN Thumbnail
SV2C-PC12-10NN
SV2C-PC12-10NN Thumbnail
SV2C-PC12-20NN
SV2C-PC12-20NN Thumbnail
SV2C-PC12-03FB
SV2C-PC12-03FB Thumbnail
SV2C-PC12-05FB
SV2C-PC12-05FB Thumbnail
SV2C-PC12-10FB
SV2C-PC12-10FB Thumbnail
SV2C-PC12-20FB
SV2C-PC12-20FB Thumbnail
SV2C-PD12-05NN
SV2C-PD12-05NN Thumbnail
SV2C-PD12-03NN
SV2C-PD12-03NN Thumbnail
SV2C-PD12-20FN
SV2C-PD12-20FN Thumbnail
SV2C-PD12-10FN
SV2C-PD12-10FN Thumbnail
SV2C-PD12-05FN
SV2C-PD12-05FN Thumbnail
SV2C-PD12-03FN
SV2C-PD12-03FN Thumbnail
SV2C-PC12-20NB
SV2C-PC12-20NB Thumbnail
SV2C-PC12-10NB
SV2C-PC12-10NB Thumbnail
SV2C-PC12-05NB
SV2C-PC12-05NB Thumbnail
SV2C-PC12-03NB
SV2C-PC12-03NB Thumbnail
SV2C-PD12-10NN
SV2C-PD12-10NN Thumbnail
SV2C-PD12-20NN
SV2C-PD12-20NN Thumbnail
SV2C-PD12-03FB
SV2C-PD12-03FB Thumbnail
SV2C-PD12-05FB
SV2C-PD12-05FB Thumbnail
SV2C-PD12-10FB
SV2C-PD12-10FB Thumbnail
SV2C-PD12-20FB
SV2C-PD12-20FB Thumbnail
SV2C-PD12-03NB
SV2C-PD12-03NB Thumbnail
SV2C-PD12-05NB
SV2C-PD12-05NB Thumbnail
SV2C-PD12-10NB
SV2C-PD12-10NB Thumbnail
SV2C-PD12-20NB
SV2C-PD12-20NB Thumbnail
SV2C-PD08-05FB
SV2C-PD08-05FB Thumbnail
SV2C-PD08-03FB
SV2C-PD08-03FB Thumbnail
SV2C-PD08-20NN
SV2C-PD08-20NN Thumbnail
SV2C-PD08-10NN
SV2C-PD08-10NN Thumbnail
SV2C-PD08-05NN
SV2C-PD08-05NN Thumbnail
SV2C-PD08-03NN
SV2C-PD08-03NN Thumbnail
SV2C-PD08-20FN
SV2C-PD08-20FN Thumbnail
SV2C-PD08-10FN
SV2C-PD08-10FN Thumbnail
SV2C-PD08-05FN
SV2C-PD08-05FN Thumbnail
SV2C-PD08-03FN
SV2C-PD08-03FN Thumbnail
SV2C-PD08-10FB
SV2C-PD08-10FB Thumbnail
SV2C-PD08-20FB
SV2C-PD08-20FB Thumbnail
SV2C-PD08-03NB
SV2C-PD08-03NB Thumbnail
SV2C-PD08-05NB
SV2C-PD08-05NB Thumbnail
SV2C-PD08-10NB
SV2C-PD08-10NB Thumbnail
SV2C-PD08-20NB
SV2C-PD08-20NB Thumbnail
SV2C-PF06-03FN
SV2C-PF06-03FN Thumbnail
SV2C-PF06-05FN
SV2C-PF06-05FN Thumbnail
SV2C-PF06-10FN
SV2C-PF06-10FN Thumbnail
SV2C-PF06-20FN
SV2C-PF06-20FN Thumbnail
SV2C-PF04-05NN
SV2C-PF04-05NN Thumbnail
SV2C-PF04-03NN
SV2C-PF04-03NN Thumbnail
SV2C-PF04-20FN
SV2C-PF04-20FN Thumbnail
SV2C-PF04-10FN
SV2C-PF04-10FN Thumbnail
SV2C-PF04-05FN
SV2C-PF04-05FN Thumbnail
SV2C-PF04-03FN
SV2C-PF04-03FN Thumbnail
SV2C-PF06-20NN
SV2C-PF06-20NN Thumbnail
SV2C-PF06-10NN
SV2C-PF06-10NN Thumbnail
SV2C-PF06-05NN
SV2C-PF06-05NN Thumbnail
SV2C-PF06-03NN
SV2C-PF06-03NN Thumbnail
SV2C-PF04-10NN
SV2C-PF04-10NN Thumbnail
SV2C-PF04-20NN
SV2C-PF04-20NN Thumbnail
SV2C-B120-03FB
SV2C-B120-03FB Thumbnail
SV2C-B120-05FB
SV2C-B120-05FB Thumbnail
SV2C-B120-10FB
SV2C-B120-10FB Thumbnail
SV2C-B120-20FB
SV2C-B120-20FB Thumbnail
SV2C-B120-03NB
SV2C-B120-03NB Thumbnail
SV2C-B120-05NB
SV2C-B120-05NB Thumbnail
SV2C-B120-10NB
SV2C-B120-10NB Thumbnail
SV2C-B120-20NB
SV2C-B120-20NB Thumbnail
SV2C-E222-05FN
SV2C-E222-05FN Thumbnail
SV2C-E222-03FN
SV2C-E222-03FN Thumbnail
SV2C-E122-20NN
SV2C-E122-20NN Thumbnail
SV2C-E122-10NN
SV2C-E122-10NN Thumbnail
SV2C-E122-05NN
SV2C-E122-05NN Thumbnail
SV2C-E122-03NN
SV2C-E122-03NN Thumbnail
SV2C-E122-20FN
SV2C-E122-20FN Thumbnail
SV2C-E122-10FN
SV2C-E122-10FN Thumbnail
SV2C-E122-05FN
SV2C-E122-05FN Thumbnail
SV2C-E122-03FN
SV2C-E122-03FN Thumbnail
SV2C-E222-10FN
SV2C-E222-10FN Thumbnail
SV2C-E222-20FN
SV2C-E222-20FN Thumbnail
SV2C-E222-03NN
SV2C-E222-03NN Thumbnail
SV2C-E222-05NN
SV2C-E222-05NN Thumbnail
SV2C-E222-10NN
SV2C-E222-10NN Thumbnail
SV2C-E222-20NN
SV2C-E222-20NN Thumbnail
SV2-CN1-CBL50
SV2-CN1-CBL50 Thumbnail
SV2-CN1-CBL50-1
SV2-CN1-CBL50-1 Thumbnail
SV2-CN1-CBL50-2
SV2-CN1-CBL50-2 Thumbnail
SV2-CN1-RTB50
SV2-CN1-RTB50 Thumbnail
SV2-BBOX-1
SV2-BBOX-1 Thumbnail
SV2-CN3-TR2
SV2-CN3-TR2 Thumbnail
SV2-CN3-CON-2
SV2-CN3-CON-2 Thumbnail
SV2-TOR1
SV2-TOR1 Thumbnail
SV2-CM-ENETIP
SV2-CM-ENETIP Thumbnail
SV2-CM-MODTCP
SV2-CM-MODTCP Thumbnail
SV2-PRO
SV2-PRO Thumbnail
SV2-PGM-USB30
SV2-PGM-USB30 Thumbnail
SV2-PGM-USB15
SV2-PGM-USB15 Thumbnail
SV2-CN1-LTB20
SV2-CN1-LTB20 Thumbnail
SV2-BBOX-CBL
SV2-BBOX-CBL Thumbnail
ZL-HD15M-CBL-2P
ZL-HD15M-CBL-2P Thumbnail
ZL-HD15M-CBL-DB15F
ZL-HD15M-CBL-DB15F Thumbnail
GSDA-DP
GSDA-DP Thumbnail
GSDA-5K
GSDA-5K Thumbnail
SV2-CON-KIT
SV2-CON-KIT Thumbnail
SV2-CN1-CON
SV2-CN1-CON Thumbnail
SV2-CN10-STO
SV2-CN10-STO Thumbnail
SV2C-PA-CON
SV2C-PA-CON Thumbnail
SV2C-PB-CON
SV2C-PB-CON Thumbnail
SV2C-E3-CON
SV2C-E3-CON Thumbnail
SV2C-E2-CON
SV2C-E2-CON Thumbnail
SV2C-E1-CON
SV2C-E1-CON Thumbnail
SV2C-B1-CON
SV2C-B1-CON Thumbnail
SV2C-PF-CON
SV2C-PF-CON Thumbnail
SV2C-PD-CON
SV2C-PD-CON Thumbnail
SV2C-PC-CON
SV2C-PC-CON Thumbnail
SV2A-4040
SV2A-4040 Thumbnail
SV2A-4075
SV2A-4075 Thumbnail
SV2A-4150
SV2A-4150 Thumbnail
SV2A-4200
SV2A-4200 Thumbnail
SV2A-4300
SV2A-4300 Thumbnail
SV2A-4550
SV2A-4550 Thumbnail
SV2A-4750
SV2A-4750 Thumbnail
SV2A-4F00
SV2A-4F00 Thumbnail
SV2L-404N
SV2L-404N Thumbnail
SV2L-404B
SV2L-404B Thumbnail
SV2L-407N
SV2L-407N Thumbnail
SV2L-407B
SV2L-407B Thumbnail
SV2L-410N
SV2L-410N Thumbnail
SV2L-410B
SV2L-410B Thumbnail
SV2M-410N
SV2M-410N Thumbnail
SV2M-410B
SV2M-410B Thumbnail
SV2L-415N
SV2L-415N Thumbnail
SV2L-415B
SV2L-415B Thumbnail
SV2L-420N
SV2L-420N Thumbnail
SV2L-420B
SV2L-420B Thumbnail
SV2H-430N
SV2H-430N Thumbnail
SV2H-430B
SV2H-430B Thumbnail
SV2H-445N
SV2H-445N Thumbnail
SV2H-445B
SV2H-445B Thumbnail
SV2H-455N
SV2H-455N Thumbnail
SV2H-455B
SV2H-455B Thumbnail
SV2H-475N
SV2H-475N Thumbnail
SV2H-475B
SV2H-475B Thumbnail
SV2H-4B0N
SV2H-4B0N Thumbnail
SV2H-4B0B
SV2H-4B0B Thumbnail
SV2H-4F0N
SV2H-4F0N Thumbnail
SV2H-4F0B
SV2H-4F0B Thumbnail
SV2-FAN-1
SV2-FAN-1 Thumbnail
SV2-FAN-2
SV2-FAN-2 Thumbnail
SV2-FAN-3
SV2-FAN-3 Thumbnail
SV2-FAN-4
SV2-FAN-4 Thumbnail
SV2-FAN-5
SV2-FAN-5 Thumbnail
SV2-FAN-6
SV2-FAN-6 Thumbnail
SV2-FAN-7
SV2-FAN-7 Thumbnail
SV2-FAN-8
SV2-FAN-8 Thumbnail
SV2C-PF08-03NN
SV2C-PF08-03NN Thumbnail
SV2C-PF08-05NN
SV2C-PF08-05NN Thumbnail
SV2C-PF08-10NN
SV2C-PF08-10NN Thumbnail
SV2C-PF08-20NN
SV2C-PF08-20NN Thumbnail
SV2C-PF08-03FN
SV2C-PF08-03FN Thumbnail
SV2C-PF08-05FN
SV2C-PF08-05FN Thumbnail
SV2C-PF08-10FN
SV2C-PF08-10FN Thumbnail
SV2C-PF08-20FN
SV2C-PF08-20FN Thumbnail


To learn more: https://www.AutomationDirect.com/sure-servo2?utm_source=OvMKSDX_4PY&utm_medium=VideoTeamDescription

(VID-SV-0086)

The SureServo 2 uses PR mode to program and execute paths in the drive for executing motion or logic. Today we discuss ways to trigger these paths. This video is a follow-up to the PR Mode video.

Online Support Page: https://community.automationdirect.com/s/?utm_source=OvMKSDX_4PY&utm_medium=VideoTeamDescription

**Please check our website for our most up-to-date product pricing and availability.


Hide Transcript
View Transcript

In our previous video on Position Register or “PR” mode, we showed you the incredible capabilities available to you with path programming in the SureServo2 drive. It is important to understand that once you program a PR path, there are many ways to trigger it. Regardless of which trigger method is used, they all will execute the same path. In the PR mode configuration video, we only used the configuration software to trigger a PR path. While this is great for testing, and initial setup, it isn’t feasible to manually trigger a move over and over, when you need to run the move thousands of times per day, each day every year. The most common methods to command a PR path in a production environment are using the drive’s digital inputs or writing information using Ethernet or serial communications. The other options we discussed in the initial PR mode video were Capture, Compare, E-Cam and Event Triggering. These are all for more advanced and specialized motion applications and require a lot of other settings and understanding. They are all described in detail in the SureServo2 user manual, so we won’t be focusing on them today. Additionally, we cover triggering a PR path via communications in this video for Modbus/TCP, this video for Modbus/RTU, this video for implicit EtherNet/IP, and in this video for explicit EtherNet/IP so we also won’t be rehashing any of those. We will instead be focused on the final method for triggering a PR path in the SureServo2. This is done using the drive’s digital inputs. With the drive configuration we performed in the PR mode video, triggering PR Path #1 will start a four-path program that sends our linear slide to 0, then cycles between +3 inches and -3 inches. In our video today we are using a slightly different motion base, but the concept will be the same. Let’s also plan to add a 5th PR path trigger as an option to interrupt the cycle and return us to 0. To do this we will go to the PR Mode Setting screen and set Path 5 to be a point-to-point move that does not proceed to the next path. We will have this path interrupt any previous path. This will cause this path to be immediately executed overriding any currently running paths. We could also use an overlap move to have a blended transition when the active path enters its deceleration region. Since this path is going to run to a stop at 0, an overlap isn’t necessary so we will leave that off. The path will move to a position of 0, and we will use the same accel, decel, and velocity as the paths we programmed in the PR mode video. We can then write this path to the drive. To trigger PR Path #1, we will need to wire in a few digital inputs. Since we don’t know which digital inputs to wire just yet, this will require a little planning first. Remember that any servo motion requires the servo to be enabled, and to begin a PR path, we need to be able to select one of up to 100 different paths (0-99) as well as trigger them. Let’s take a look at the drive digital inputs in our SureServo2 Pro software. We can go to the top menu bar and select “Digital IO/Jog Control.” Here we see the default configuration for digital inputs and digital outputs. If we check the box for “Edit DI/O Item” it will allow us to change the settings for each digital input. DI1 is already set for Servo ON and it is set to Logic Condition A. “Servo ON” means the same thing as Servo Enable, and Logic Condition A means the input is normally open, so it will register as “ON” when current is flowing. If we look further down the table, we see that DI6 and 7 default to overtravel sensor inputs and DI8 is set to an override or machine stop input. All three are set to Logic B. Logic condition B is normally closed, so an input would register as “ON” when current is not flowing. This is very useful when you are using machine safety functions, such as a machine stop button or overtravel switches. These devices often use normally closed contacts so that a wire breaking will cause the system to respond the same as if the stop button was pressed, or an overtravel occurred. For SureServo2, digital inputs may be assigned as PR selection inputs. Each input represents a bit in the binary path number. PR Path 4 for example is the binary number 100, so it would be selected by having three digital inputs reserved for path selection, with the first two inputs off to represent the 0s, and the third input on to represent the 1. In our example, PR Path 5 is the highest we will need to select, so 3 inputs being reserved for path selection is sufficient. If we had more PR paths, we might need to reserve more digital inputs as our binary number got longer. Let’s set DI2-4 as our three-bit positions and we will use Logic A. As we assign each input, it is important that we select “OK” prior to moving to the next input otherwise the input will return to its previous setting as soon as I move on. With those three inputs assigned, the last thing we will need is an input to trigger the PR path we have selected. We will use DI5 for this. Alright. Now that we have our digital inputs assigned, we need to wire up the inputs to our control system. Let’s look at this wiring schematic from the manual. These inputs can be wired as sinking NPN inputs, or sourcing PNP inputs as we see here. With our inputs wired in, we are ready to start moving. I have the servo powered up, our linear slide is in the middle and the system is homed to Position 0. The SureServo2 Pro software actually tells us if any of the inputs or outputs are on, in real time. I just love how easy the software makes testing inputs and verifying that everything is wired up correctly. These status boxes are where we see if the input is ON or OFF. Using those boxes, we can see that I have DI1 on to enable the drive, as well as DIs 6, 7, and 8 all on to act as overtravel sensors and the machine stop button. Currently, our three PR selection inputs are all off, so if I were to turn on DI5 to trigger a PR move, the system would run PR Path 0, which is the homing routine. We don’t want to do this, so let’s trigger Path 1 instead. Remember that Path 1 will start a move to 0 inches, Path 2 will be a move to +3 inches and will start Path 3 after a pause. Path 3 will be a move to -3 inches and will start Path 4 after another pause. Path 4 will return back to Path 2 repeating the cycle indefinitely. If I turn on DI2 and leave DI 3 and 4 off, this corresponds to the binary number 001. I can now turn on DI5 to run PR Path 1. We see the linear slide move to positive 3 inches, pause for 1 second, then go backwards to negative 3 inches and repeat. Just like we saw in our PR mode video. So far, so good. Now let’s switch our PR mode selection bits to select Path 5. Remember that Path 5 is our interrupt, that will then return the linear slide back to 0. PR Path 5 is a binary number of 101, so I will have DI2 and DI4 on, and leave DI3 off. When I do this, nothing occurs because we have selected Path 5, but have not yet sent the trigger. If I now turn on DI5 to trigger the path, we see the cycle is interrupted and the linear slide moves back to 0. Perfect! We have now triggered multiple PR paths with digital inputs using the SureServo2. For further assistance please contact our award winning free technical support! We also have plenty more videos on SureServo2 setup and configuration for you to take a look at. To subscribe to our YouTube channel, click here.



No data returned!
An error has occurred! Please contact support
Videos Home > SureServo2 Position Register Mode (PR Mode) Triggering from AutomationDirect
Contact, Connect & More
Sign Up
to receive:
FREE e-Newsletter
sign up today!
Connect With Us
Social Media Channels:
linkedin    facebook    x    instagram    youtube
Company Information
About Us
Brand Line Card
System Integrator Program
International Sales
Panel Builder Program
Site Help
Company Reviews
Download Price List
Contact Us
Contact Options
1-800-633-0405
Monday - Friday
9 a.m. - 6 p.m. ET
excluding holidays
Career Opportunities
Voted #1 mid-sized employer in Atlanta
We're a great place to work!
Check out our job openings

Need Training?
Affordable Training by Interconnecting Automation
Free Online PLC Training
FREE Video Tutorials
Information & News
What's New / In The News
FREE e-Newsletter
Automation Notebook
Product Literature
White Papers
News, Product and Training Bulletins
E-Books
Shop with confidence
Checked   Safe & Secure
payment methods


We accept VISA, MasterCard, Discover, American Express, PayPal or company purchase orders.
AutomationDirect

BBB Accredited

Voted #1 mid-sized employer in Atlanta
Check out our job openings

Copyright © 1999-2025 AutomationDirect.  ALL RIGHTS RESERVED.
Site Map     Send Us your Feedback     Unsubscribe     Email Preferences     Legal & Business Policies     YouTube Terms of Service
Clear login credentials



Back to Top


spinner Updating...
Info
„