AutomationDirect
Search
Login | Register
Accounts & Orders
Cart
0
$0.00

Recent Orders

View and Manage | Request Cancellation
Loading Order History
Loading...Loading...

Your Account

Account Home

Checkout   $0.00


  • My Orders
  • Product Returns (RMAs)
  • Pay Proforma Invoices
  • Pay Freights
  • Invoices / Invoice Reprint
  • Quotes / Favs / BOMs
  • Packing List Reprint
  • My Product Docs
  • Credit Application
  • Tax Exemption
| Direct Sales in US and Canada | 1-800-633-0405 | About Us | Contact Us | Line Card
Products | Support
| Compare
  
Ordering Tools  
warning Cookies are not enabled on your browser.
Cookies are required for our site. Please enable cookies in your browser preferences to continue.
ADC will be closed Friday, July 4th, to celebrate Independence Day. Orders placed after cut-off times on Thursday will be processed and shipped on Monday, July 7th.
+
Navigation
+
Shopping Categories
  • Barcode / RFID / Vision
  • Bulk Wire & Cable
  • Cables (Terminated)
  • Circuit Protection / Fuses / Disconnects
  • Communications
  • Drives & Soft Starters
  • Enclosure Thermal Management & Lights
  • Enclosures & Racks
  • Field I/O
  • HMI (Human Machine Interface)
  • Hydraulic Components
  • Motion Control
  • Motor Controls
  • Motors
  • Pneumatic Components
  • Power Products (Electrical)
  • Power Transmission (Mechanical)
  • Process Control & Measurement
  • Programmable Controllers
  • Pushbuttons / Switches / Indicators
  • Relays / Timers
  • Safety
  • Sensors / Encoders
  • Stacklights
  • Structural Frames / Rails
  • Tools & Test Equipment
  • Valves
  • Water (Potable) Components
  • Wiring Solutions
  • Retired Products
+
Learn More
  • Brand Line Card
  • What's New
  • E-newsletter
  • Online PDF Catalog
  • Video Tutorials
  • Company Reviews
  • Learning Library
  • Affordable Training
  • Free Online PLC training
  • Cybersecurity
+
In Depth Product Sites
  • Programmable Logic Controllers
  • Productivity1000 PLCs
  • Productivity2000 PLCs
  • Productivity3000 PLCs
  • ProductivityCODESYS
  • LS Electric XGB Series PLCs
  • ProductivityOpen
  • CLICK PLCs
  • Do-more H2 PLCs or
    Do-more T1H Series
  • Do-more BRX PLCs
  • C-more Touch Panels
  • AC & DC Drives
  • Motion Control Components
  • Servos
  • StrideLinx
  • Pneumatics
+
Product Selectors &
Configuration Utilities
  • PLC Family Selector
  • P1000 PLC Systems
  • P2000 PLC Systems
  • P3000 PLC Systems
  • ProductivityCODESYS
  • CLICK PLC Systems
  • Do-more® BRX PLC Systems
  • LS-Electric® XGB PLC Systems
  • Productivity®Open Systems
  • Datalogic® Safety Light Curtains
  • LS-Electric® Servo Systems
  • Nitra® Pneumatic Grippers
  • Object Detection (Sensors)
  • PAL Controller Configurator
  • Precision Gearbox Selector
  • Protos X® Field I/O
  • Quadritalia® Modular Enclosures
  • Stellar® Soft Starters
  • Stepper System Selector
  • SureFrame T-slot Extrusion
  • SureMotion® XYZ Gantry
  • SureServo2® System Selector
  • SureStep® Linear Actuators
  • Timing Belts & Pulleys
  • Werma® Stacklights
  • ZIPLinks

Productivity PID Loop Part 4 - Hardware Configuration & Tagnames from AutomationDirect


Related Documents


PID Loop Programming Parts 1-11 - Slides


Productivity3000 - PID Demo Project


C-more Touch Panel - PID Demo Project



Related Products

PCON-KIT
PCON-KIT Thumbnail
P1-USER-M
P1-USER-M Thumbnail
P1-10RTB-1
P1-10RTB-1 Thumbnail
P1-10RTB
P1-10RTB Thumbnail
P1-04PWM
P1-04PWM Thumbnail
P1-02HSC
P1-02HSC Thumbnail
P1-04RTD
P1-04RTD Thumbnail
P1-4ADL2DAL-2
P1-4ADL2DAL-2 Thumbnail
P1-4ADL2DAL-1
P1-4ADL2DAL-1 Thumbnail
P1-08DAL-2
P1-08DAL-2 Thumbnail
P1-08DAL-1
P1-08DAL-1 Thumbnail
P1-08ADL-2
P1-08ADL-2 Thumbnail
P1-08ADL-1
P1-08ADL-1 Thumbnail
P1-04AD
P1-04AD Thumbnail
P1-08TA
P1-08TA Thumbnail
P1-08NA
P1-08NA Thumbnail
P1-15TD2
P1-15TD2 Thumbnail
P1-15TD1
P1-15TD1 Thumbnail
P1-16NE3
P1-16NE3 Thumbnail
P1-16ND3
P1-16ND3 Thumbnail
P1-08NE3
P1-08NE3 Thumbnail
P1-02AC
P1-02AC Thumbnail
P1-01DC
P1-01DC Thumbnail
P1-550
P1-550 Thumbnail
P1-540
P1-540 Thumbnail
P1-START
P1-START Thumbnail
MICSD-16G
MICSD-16G Thumbnail
P1-01AC
P1-01AC Thumbnail
P1-08ND3
P1-08ND3 Thumbnail
P1-08TD1
P1-08TD1 Thumbnail
P1-08TD2
P1-08TD2 Thumbnail
P1-15CDD1
P1-15CDD1 Thumbnail
P1-15CDD2
P1-15CDD2 Thumbnail
P1-16CDR
P1-16CDR Thumbnail
P1-08TRS
P1-08TRS Thumbnail
P1-16TR
P1-16TR Thumbnail
P1-04ADL-1
P1-04ADL-1 Thumbnail
P1-04ADL-2
P1-04ADL-2 Thumbnail
P1-04DAL-1
P1-04DAL-1 Thumbnail
P1-04DAL-2
P1-04DAL-2 Thumbnail
P1-04THM
P1-04THM Thumbnail
P1-04NTC
P1-04NTC Thumbnail
P1-08SIM
P1-08SIM Thumbnail
PS-PGMSW
PS-PGMSW Thumbnail
P2-550
P2-550 Thumbnail
P2-RS
P2-RS Thumbnail
P2-START2
P2-START2 Thumbnail
P2-04B
P2-04B Thumbnail
P2-07B
P2-07B Thumbnail
P2-11B
P2-11B Thumbnail
P2-15B
P2-15B Thumbnail
P2-01AC
P2-01AC Thumbnail
P2-01DCAC
P2-01DCAC Thumbnail
P2-08ND3-1
P2-08ND3-1 Thumbnail
P2-08NE3
P2-08NE3 Thumbnail
P2-16ND3-1
P2-16ND3-1 Thumbnail
P2-16NE3
P2-16NE3 Thumbnail
P2-32ND3-1
P2-32ND3-1 Thumbnail
P2-32NE3
P2-32NE3 Thumbnail
P2-08TD1S
P2-08TD1S Thumbnail
P2-08TD2S
P2-08TD2S Thumbnail
P2-08TD1P
P2-08TD1P Thumbnail
P2-08TD2P
P2-08TD2P Thumbnail
P2-15TD1
P2-15TD1 Thumbnail
P2-15TD2
P2-15TD2 Thumbnail
P2-16TD1P
P2-16TD1P Thumbnail
P2-16TD2P
P2-16TD2P Thumbnail
P2-32TD1P
P2-32TD1P Thumbnail
P2-32TD2P
P2-32TD2P Thumbnail
P2-08NAS
P2-08NAS Thumbnail
P2-16NA
P2-16NA Thumbnail
P2-08TAS
P2-08TAS Thumbnail
P2-16TA
P2-16TA Thumbnail
P2-08TRS
P2-08TRS Thumbnail
P2-16TR
P2-16TR Thumbnail
P2-04AD
P2-04AD Thumbnail
P2-08AD-1
P2-08AD-1 Thumbnail
P2-08AD-2
P2-08AD-2 Thumbnail
P2-08ADL-1
P2-08ADL-1 Thumbnail
P2-08ADL-2
P2-08ADL-2 Thumbnail
P2-16AD-1
P2-16AD-1 Thumbnail
P2-16AD-2
P2-16AD-2 Thumbnail
P2-16ADL-1
P2-16ADL-1 Thumbnail
P2-16ADL-2
P2-16ADL-2 Thumbnail
P2-04DA
P2-04DA Thumbnail
P2-04DAL-1
P2-04DAL-1 Thumbnail
P2-04DAL-2
P2-04DAL-2 Thumbnail
P2-08DA-1
P2-08DA-1 Thumbnail
P2-08DA-2
P2-08DA-2 Thumbnail
P2-16DA-1
P2-16DA-1 Thumbnail
P2-16DA-2
P2-16DA-2 Thumbnail
P2-08DAL-1
P2-08DAL-1 Thumbnail
P2-08DAL-2
P2-08DAL-2 Thumbnail
P2-16DAL-1
P2-16DAL-1 Thumbnail
P2-16DAL-2
P2-16DAL-2 Thumbnail
P2-8AD4DA-1
P2-8AD4DA-1 Thumbnail
P2-8AD4DA-2
P2-8AD4DA-2 Thumbnail
P2-08THM
P2-08THM Thumbnail
P2-06RTD
P2-06RTD Thumbnail
P2-08NTC
P2-08NTC Thumbnail
P2-SCM
P2-SCM Thumbnail
P2-HSI
P2-HSI Thumbnail
P2-HSO
P2-HSO Thumbnail
P2-08SIM
P2-08SIM Thumbnail
P3-550E
P3-550E Thumbnail
P3-550
P3-550 Thumbnail
P3-530
P3-530 Thumbnail
P3-RS
P3-RS Thumbnail
P3-RX
P3-RX Thumbnail
P3-EX
P3-EX Thumbnail
P3-03B
P3-03B Thumbnail
P3-05B
P3-05B Thumbnail
P3-08B
P3-08B Thumbnail
P3-11B
P3-11B Thumbnail
P3-01AC
P3-01AC Thumbnail
P3-01DC
P3-01DC Thumbnail
P3-08ND3S
P3-08ND3S Thumbnail
P3-16ND3
P3-16ND3 Thumbnail
P3-32ND3
P3-32ND3 Thumbnail
P3-64ND3
P3-64ND3 Thumbnail
P3-08TD1S
P3-08TD1S Thumbnail
P3-08TD2S
P3-08TD2S Thumbnail
P3-16TD1
P3-16TD1 Thumbnail
P3-16TD2
P3-16TD2 Thumbnail
P3-32TD1
P3-32TD1 Thumbnail
P3-32TD2
P3-32TD2 Thumbnail
P3-64TD1
P3-64TD1 Thumbnail
P3-64TD2
P3-64TD2 Thumbnail
P3-08NAS
P3-08NAS Thumbnail
P3-16NA
P3-16NA Thumbnail
P3-08TAS
P3-08TAS Thumbnail
P3-16TA
P3-16TA Thumbnail
P3-08TRS
P3-08TRS Thumbnail
P3-08TRS-1
P3-08TRS-1 Thumbnail
P3-16TR
P3-16TR Thumbnail
P3-04ADS
P3-04ADS Thumbnail
P3-08AD
P3-08AD Thumbnail
P3-16AD-1
P3-16AD-1 Thumbnail
P3-16AD-2
P3-16AD-2 Thumbnail
P3-08RTD
P3-08RTD Thumbnail
P3-08THM
P3-08THM Thumbnail
P3-04DA
P3-04DA Thumbnail
P3-08DA-1
P3-08DA-1 Thumbnail
P3-08DA-2
P3-08DA-2 Thumbnail
P3-06DAS-1
P3-06DAS-1 Thumbnail
P3-16DA-1
P3-16DA-1 Thumbnail
P3-16DA-2
P3-16DA-2 Thumbnail
P3-8AD4DA-1
P3-8AD4DA-1 Thumbnail
P3-8AD4DA-2
P3-8AD4DA-2 Thumbnail
P3-SCM
P3-SCM Thumbnail
P3-HSI
P3-HSI Thumbnail
P3-HSO
P3-HSO Thumbnail
P3-16SIM
P3-16SIM Thumbnail


To learn more: https://www.automationdirect.com/productivity?utm_source=_RR_BUCid_4&utm_medium=VideoTeamDescription

(VID-P3-0037)

Part 4 of 11

Programming

Hardware Configuration, Tagnames, and Calculations.

Online Support Page: https://community.automationdirect.com/s/?utm_source=_RR_BUCid_4&utm_medium=VideoTeamDescription

**Please check our website for our most up-to-date product pricing and availability.


Hide Transcript
View Transcript

Our programming will go quicker if we have our Productivity 3000 hardware configured, and at the same time have a way to easily identify all of our analog and discrete signals. Better yet, lets take our application conditions, and by doing some simple math and scaling calculations, we can put them into units of measure that are easily understood. Before we start the actual programming of our application demo, we need to configure the Productivity 3000 system hardware. With the programming software opened on a personal computer and connected by way of either a USB cable or Ethernet communications, and online with the CPU, open the Hardware Configuration dialog window under the Setup Application Tools tab. Make sure the Productivity 3000 CPU module is in the Stop mode, and then click the Read Configuration button. If any Base or I/O Module Mismatches are reported, click the Yes To All button. After a few moments, the dialog window will report back with all of the attached I/O modules and any other attached hardware. We can now take a look at the P3-550 CPU settings, or any of the I/O module settings by just bringing up the Local Base Group under the PAC Base Groups list. You can also view the LEARN video titled Part 2 How to Configure the Productivity 3000 Programmable Controller for additional details on the Hardware Configuration utility that is built into the Productivity 3000. Lets start our programming by first discussing the various signals we will be using in our application and how we can use Tagnames in our program to reduce programming time. Did I forget to mention that the Productivity 3000 Programmable Automation Controller is a Tagname Based Controller? What does this mean? Well, instead of coded numerical references to the various input and output signals, and internal data registers used in the CPU, we can create descriptive readable names, called Tagnames, to define our I/O points and data variables. Tagnames have the freedom to be defined as any data type. So instead of using different arbitrary blocks of memory for each data type, which wastes memory, we only use what we need. The tagnames can be created and maintained by using the softwares built-in Tagname Database, or created on the fly. Please note that the I/O points are automatically assigned coded numerical names, such as DI-0.1.1.3, which tells us the point for the module is a Discrete Input located in the local base group 0, base 1, slot 1, and is the number 3 input point. We have the ability to rename this I/O point to a descriptive Tagname such as Overflow. If you are use to programming with coded numerical references, such as X42, or V2023, it may take a little getting into using Tagnames, but once you have the hang of it, youll be glad for the convenience, both in programming, and later in troubleshooting your application. Again, we can either use the Tagname Database to create all of the tagnames we will need in our program, thats if we have defined them in our planning stage, or we can create the Tagnames on the fly as we program. Once we have defined and created the various Tagnames within our program, we can then export the Tagnames to make them available for importing later into the C-more Touch Panel program that we will be using in our application. This will both save time, and if you are like me, prevent typos. The file format used in the export is called CSV, or comma separated values, and is a common format that can be opened into a Microsoft Excel spreadsheet, or other similar application. The Tagnames and other details can then be edited, maintained, saved, and imported back into the either the Productivity 3000 or C-more project, which in many cases can be a time saver. OK, lets do our first programming task. It is always easier to work with numbers that have a useful meaning. So lets take the 0 to 10 volt DC analog water level signal from the Ultrasonic Sensor that produces a count range of 0 to 65,535 from the analog input module and convert it to a Process Tank volume shown in gallons. There are some calculations along the way we need to do, and we can make it a little easier by taking advantage of the Productivity 3000s Math Instruction. For reference, the ultrasonic sensor we have selected can measure a distance of 100 to 600 millimeters, or in English units, 3.94 to 23.62 inches. Again, the sensor is mounted through the Process Tanks lid, so keep in mind the Tanks volume relationship to sensor distance is inverted, with the most volume being when the water level is closest to the sensors face, and the sensor is reading the shortest distance. It is also helpful to know that a volume of one gallon equals 231 cubic inches. And, the inside diameter of our 10 gallon process tank measures twelve and one half (12.5) inches. Knowing the height in the process tank that represents one gallon will be useful for our calculations, so we will create our first Tagname, and name it Water underscore Height underscore per underscore Gallon, which is typed into the Result parameter of the Math Instruction described next. Using a standard formula to calculate volume in a cylindrical tank where Volume in cubic inches equals Pi times the tanks radius squared, times the height, and again knowing that one gallon equals 231 cubic inches, we can use the Math Instruction to assign our new Tagname to equal the value 231 divided by Pi times the tanks radius of six and one quarter (6.25) inches squared. Once the Math Instruction is OKd, the programming software is asking us to define the new Tagname. I have assigned it as a Float, 32 Bit Data Type, which is more accuracy then we require, but again the Productivity 3000 only uses memory that has been assigned and does not waste an entire block of memory for one value. Once we have our calculation in the Math Instruction, lets check it by placing the CPU in run mode and taking a look at the result while in Monitor Mode. The result is 1.88236 inches of height per gallon, but for conversational purposes well just say 1.88 inches. As a check, if I measure with a scale between the one gallon graduations on the process tank, I can see to the best of my guesstimate, that this is very close, something like 1.9 inches on my steel scale. In Part 5 we will continue with additional math instructions to calculate where our ultrasonic sensor sees the water level for both the maximum and minimum volumes in our process tank.



No data returned!
An error has occurred! Please contact support
Videos Home > Productivity PID Loop Part 4 - Hardware Configuration & Tagnames from AutomationDirect
Contact, Connect & More
Sign Up
to receive:
FREE e-Newsletter
sign up today!
Connect With Us
Social Media Channels:
linkedin    facebook    x    instagram    youtube
Company Information
About Us
Brand Line Card
System Integrator Program
International Sales
Panel Builder Program
Site Help
Company Reviews
Download Price List
Contact Us
Contact Options
1-800-633-0405
Monday - Friday
9 a.m. - 6 p.m. ET
excluding holidays
Career Opportunities
Voted #1 mid-sized employer in Atlanta
We're a great place to work!
Check out our job openings

Need Training?
Affordable Training by Interconnecting Automation
Free Online PLC Training
FREE Video Tutorials
Information & News
What's New / In The News
FREE e-Newsletter
Automation Notebook
Product Literature
White Papers
News, Product and Training Bulletins
E-Books
Shop with confidence
Checked   Safe & Secure
payment methods


We accept VISA, MasterCard, Discover, American Express, PayPal or company purchase orders.
AutomationDirect

BBB Accredited

Voted #1 mid-sized employer in Atlanta
Check out our job openings

Copyright © 1999-2025 AutomationDirect.  ALL RIGHTS RESERVED.
Site Map     Send Us your Feedback     Unsubscribe     Email Preferences     Legal & Business Policies     YouTube Terms of Service
Clear login credentials



Back to Top


spinner Updating...
Info